Archive | April 2013

Lithium-ion: a modest proposal

Entia multiplicanda sine necessitate. Lithium-ion batteries are great for digital cameras. They are lightweight, charge quickly, self-discharge relatively slowly, and provide a lot of power on impulse. The problem is that there are too many differentiated types of batteries for the same basic use, which causes waste and difficult disposal.  Given this, the proposal is that manufacturers should form an association (or use an organization like ISO) to standardize battery sizes and voltages (capacities, no, for reasons to be discussed).

1.  Questionable differentiation.  First, there is no reason for there to be hundreds of types and shapes of batteries to fit digital cameras. The batteries themselves start with 3.7V cells, a voltage defined by the basic chemistry.  Other cells start with a chemically fixed voltage too: lithium-manganese disposable battery voltage is 1.8V, silver oxide is 1.55V, alkaline is 1.5V, zinc-air is 1.4V, mercury is 1.35V, and NiMH are 1.2V).  Rechargeable lithium cells come in a number of commoditized sizes and shapes that are combined serially (to raise voltage) or in parallel (to increase current capacity).  The combination is fitted with a printed charge protection circuit and put into a plastic case that is the housing for the battery. Some manufacturers use additional circuitry to transmit detailed charge state information in to the camera (example: Sony’s InfoLithium).
Needless to say, most “proprietary” Li-Ion batteries are still reverse-engineered and sold in generic form within a couple of weeks of a camera’s release. And most of the time, they function well. And all of them charge so similarly that companies like Delkin and Lenmar can make universal Li-Ion chargers that can charge pretty much anything.
Manufacturers explain that their batteries are differentiated due to packaging requirements in digital cameras. When you consider that everything on a digital camera except the space behind the lens can be designed fairly arbitrarily, this statement seems suspect. It seems even more suspect when you consider that even during the late film era, cameras were all built around standard cell types: MS76, AA, CR123A, 2CR5, etc.: buttons, cylinders, or boxes.

The real reason manufacturers differentiate their rechargeable batteries is to make money. Canon doesn’t sell Nikon-compatible batteries, Nikon doesn’t sell Pentax-compatible batteries, and none of them wants you to use knockoffs (and you’ll see why: the OEM batteries cost almost five times as much as generics, despite similar basic manufacturing costs). Sometimes the extra power-management circuitry (like InfoLithium) is provided as a carrot to stay with the “official” battery; sometimes it is used as a stick (as with the Leica M9).

And in fact, when you line a bunch of batteries up, you see that there is really a finite number of sizes.  The list below is not an exhaustive list, but you can see how this really comes down to three voltages and sizes – the MaH capacity really only bears on how long they last and to a lesser degree on instant current capability – but within any one of these bands, one camera is not significantly different from the next:

  • Large SLR: Canon LP-E4, Nikon EN-EL4, 11.1v (these go in cameras that in the days of film would have taken 8xAA batteries)
  • Mid-sized: Fuji NP-W126, Nikon EN-EL3e, Canon DLCE6, 7.4v  (these cameras would have taken two CR123As or a 2CR5 back in the day)
  • Small: Fuji NP-95, Ricoh DB-60 – 3.7v (one CR123A or a CR2).

(There are certainly other permutations of

Within this range, there may not be any reason to differentiate midsized camera from midsized camcorder batteries. And for some applications, removable end caps could fulfill latching or appearance requirements (as they currently do with some Nikon batteries). And as commodity cell capacity vs. size improves, the same batteries could be built with more and more capacity.

2.  Battery waste management and risk. It is very well documented that Li-Ion batteries (a) must be kept at an appropriate storage charge not to lose capacity; (b) only live for a certain number of charges (usually a few hundred); and (c) have a finite life in any event. Sub-optimal use of Li-ion batteries moves there products toward the waste stream faster, and the more batteries a person is trying to juggle, the faster batteries lose capacity and are discarded. In the waste stream, the Li-Ion battery that worked well for 400 full charges or hit its usable life still consists of plastic (landfill life: 1,000 years), lead solder (often present), and power cells that if breached can evolve hydrogen gas and difficult-to-extinguish fires. Oh yes, and there is the “non-toxic” lithium, which is obtained at a price to the environment and a fairly big one to the people who do the work.

If you think Li-Ion batteries are “recycled,” that’s not exactly the case. Electronics “recycling” in the Western Hemisphere often means a toxic waste landfill, en masse shipment to the third world for metal reclamation in unregulated environments, or at best in organized battery recycling facilities, effectively burning the batteries in smelters (see this description). This mitigates environmental impacts, but it uses a lot of energy.

3.  Device death.  It’s one thing for a single battery to become useless and need to be replaced. It’s worse when the end of production for a specialty battery spells the end of a device’s useful life. This has happened quite a bit with older digitals that ran on NiMH cells: it is getting very difficult to keep a Nikon D1, a Kodak DCS760 or a Leica Digital Modul R in (good) batteries now – unless you are into very generic Chinese ones that are now sold at extortionate prices.

4.  Spillover effects. There are a lot of things that could run on Li-ion batteries, if they were standardized and a predictable future supply could be assured. The manufacturer of a $2 flashlight, for example, is not going to engineer a whole new Li-ion battery system to run it. But if a battery with a predictable size and voltage is available off the shelf, it is more likely that the manufacturer would move away from AAs (which only come in three varieties: disposable and not worth recycling, containing nickel that is nasty to mine, and containing cadmium, which is toxic). The same is true for camera flashes, high-drain devices which almost universally run on 6V provided by 4 x AA cells (to say nothing of the fact that a Matsushita division makes most of them anyway). Some things will never be practical for something like  Li-ion or standardized rechargeable batteries (low, constant drain devices; smoke detectors; devices with embedded power sources). But manufacturers should not give up on minimizing disposable (alkaline) battery use.

5.  Inconvenience. Proliferation of battery types leads to clutter.  Imagine the household with a compact camera, a larger DSLR, and an HD camcorder.  Enthusiasts may have more than one of each. It’s not just the batteries – it’s also the proprietary chargers with their cords, both of which cost money to make, take up space in the workplace or home, and represent their own waste streams (AC cords very commonly contain lead solder, for example).

Standardizing on a finite number of physical shapes, sizes, and voltages of Li-ion cells for purposes of basic compatibility would not stifle all competition in the battery arena. With only the shells and the basic standards of compatibility defined, manufacturers would still be free to compete on the basis of capacity (due to the use of newer or different internal cells), power management and camera communication.

In addition to standardization for physical and electrical qualities, the same standards or trade organization setting sizes could also set up and audit basic safety standards. No one wants to think that a $10 generic battery from Ebay will burn the house down, but a certification like CE or UL might make people sleep better while their batteries are charging.

None of this, of course, would come to pass without considerable consumer pressure on manufacturers – something that may never happen in a consumerist society that is just as likely to dispose of the digital camera as its worn-out rechargeable battery. And none of this is to exonerate disposable batteries, although they can be used in multiple devices and only rarely die of neglect.

# # # # #

Fujifilm Fujinon XF 14mm f/2.8 R

DSCF5157-Edit

Beauty and the beast. The Fujinon 14mm f/2.8 encapsulates everything that is good and bad about the Fuji X-Pro1 system. The lens is a solidly constructed, masterful piece of optics, so well corrected that it doesn’t rely on computing power to eliminate distortion. It maxes at f/4 to f/5.6, the range where most rangefinder (and most SLR prime) lenses are wide open and challenged. The mechanical design is mostly elegant. Unlike with a Leica, where you bolt on a distorted accessory finder that may have a level in one orientation only – leaving you to DxO Optics Viewpoint for verticals – the Fuji lets you watch the action and align it on a gridded electronic viewfinder (EVF) (you can, of course, see a gridded distorted wide-angle optical viewfinder (OVF), too…).

But then on the minus side you’re using an X-Pro1, which although fast on its feet occasionally puts some of its buttons too close to your fingers (ahem, Q button, I’m talking to you), very occasionally stutters with AF, and might take a second to start up with OVF on. The optical resolution of the lens and the microscopic details it can resolve mercilessly expose the sorry state of Adobe Camera Raw conversion of X-Trans RAF files. The red smearing is gone, but when you shoot white against a blue sky, inducing any amount of overexposure, or cranking up the exposure in post, or dropping a color channel too much can give you bleed in a b/w conversion. Be careful with bright sunlit scenes. Careful work will be rewarded.

The nice thing, though, is that when/if a new X-Pro comes out with a higher-res sensor, X-Trans or not, this lens will hold its own.

The wide view. Wide-angle lenses are strange creatures. The first thing to remember is that truly wide lenses didn’t  come into their own until after World War II. Until then, most cameras used focal lengths that at the widest were the equivalent of a 35mm lens on a 24x36mm camera.  The postwar period and lens coating enabled a number of complicated new designs such as the Zeiss Biogon and the Schneider Super-Angulon, each of which used a staggering number of glass elements in a symmetrical pattern. The result was an undistorted picture, though the lenses required very small clearances between the rearmost glass element and the film (making them unsuitable for most SLRs).

And even though these existed, they were niche products – most people took Robert Capa’s advice that if one did not get the picture he wanted, he was not close enough – and superwides exacerbated the problem. So until about the 1990s, a 28mm to 35mm lens was the “wide” limit for most people. It is not unwarranted; 35mm in particular represents the central field of human vision with both eyes, does not mangle human faces, even at the edges of the rame, and does not create dramatic converging parallels when the camera is tilted. Many still consider it the ideal “only lens.”

By the mid 1990s, manufacturers had figured out how to make good wide-angle lenses that were usable on SLRs. Although they were retrofocus in design, modern glass, coatings, and (most importantly) computers made it possible to make highly corrected designs. Zoom lenses, which long had been maligned, became some of the best performers. For example, the 17-35mm f/2.8D AF-s Nikkor produced sharper and less distorted wide-angle images than almost any prime Nikkor lens that preceded it in its focal-length range.

When rangefinder cameras came back into fashion, lens manufacturers found that it was relatively easy to use modern technology to design great superwide lenses. Cosina and Kobalux fielded relatively economical and high-performing 21mm lenses. These were followed by Ricoh, which remounted its GR21 lens for rangefinder, and the coup came with Konica’s 21-35mm Dual Hexanon. Not to be outdone in capabilities (or price), Leica launched its 16-18-21mm Wide-Angle Tri-Elmar. Unfortunately evident through all of this, however, is that people do not fully understand that the point of a wide-angle lens is dynamic composition, not simply making the field of view wider and everything in it tinier.

Optical performance. There is plenty of test data out there that substantiates this author’s observation: this beats the stuffing out of even most modern 21mm FOV lenses. Peak performance is at f/4 or f/5.6 – depending on whether you value better corner sharpness at the expense of a little center sharpness. A lens like this might cause you to revise your religious beliefs. Needless to say, it outperforms all of the economical adapted Leica-mount lenses and most Leica M 21mm lenses, too. It’s fairly easy to substantiate that there is no in-camera correction of pincushion distortion. Because this lens doesn’t need it. It is one of the least distorted 21mm-equivalent lenses ever made. That won’t stop you from tilting the camera, though… Vingetting is not as apparent as reviewers would lead you to believe, and it is certainly less than symmetrical wide-angle lenses.

Size/weight. This is not a small lens; it is barely smaller than the 18-55mm zoom. It is still a little bit smaller than an aspherical 21mm Elmarit for a Leica. The weight is very light; these lenses are aluminum and magnesium, not brass.  The lens does not unbalance the camera, and an X-Pro1 with this lens still feels unnaturally light. The lens takes 58mm filters, a size last seen on Canon SLRs. This would not be notable except that Fuji has been all over the place on filter sizes.

The focusing ring. This is a big attractor for a lot of people. So let’s start with the bad news: it’s still focus by wire, and it actually stops past the indicated infinity mark. This is not a big deal. But what is a big deal is that Fuji had to elect a focusing direction. Here, Fuji went with the Nikon direction and abandoned both the Leica and former Fuji MF rotation directions to get to infinity. So although you might set your X-Pro1 or XE-1 to focus like a Leica or your old Fujica, this lens will always be an outlier. But you might not care. This is a “set it and forget it” lens.

The selector. The focusing ring is the main auto/manual focus switch. Here are the modes, and they may not be what you expect:

  • Lens in “manual.”  Regardless of camera mode, the lens focuses via the ring (and by wire). There is no distance indicator in the viewfinder.
  • Lens in “auto.” The focusing ring does not turn at all. With the camera in AF mode (AF-S or AF-C), the lens autofocuses like any other Fujinon XF lens. With the camera in manual, you can use the AE/AF button to focus. Both ways, you get a distance scale in the viewfinder.

Now here’s the catch – if you thought that you were going to set the lens scale for your favorite zone-focus distance and switch AF on and off via the ring, you may lose your distance setting on switching modes. The focusing ring only pushes forward into discrete positions, which put the infinity mark (a) between f/22 and f/16, (b) at f/8, and (c) at f/2.8.  If you are not in one of these positions when you push the ring, it will cam into one of these as it goes forward. There are a number of other positions in the sub-one-meter area, but they are not really relevant.

Some people have complained that the selector is easy to knock out of position. It is actually quite stiff – and the bigger danger is forgetting that the lens is in manual mode (although during testing, I repeatedly and accidentally set the aperture at f/5.6, failed to change the hyperfocal setting from f/8, and everything came out fine).

Distance scale. The distance scale shown by the lens in manual-focus mode is fairly compressed and reflects the very short throw of manual focusing. According to the scale, at f/8, the lens can keep cover 1m to ∞ in focus. According to the viewfinder scale, though, it is 3m to infinity. Actual use suggests that the lens barrel DOF indications are very close to reality. The great depth of field of a 14mm lens puts tremendous pressure on composition – depth of focus will not be a factor in most pictures.

Viewfinder picture. Where the camera is set to the OVF, the low magnification setting will just cover the lens field of view (you will see “corners” rather than framelines). The EVF shows 100% of the field (marginally more than the OVF). Either way, you will want to turn on the gridlines and to activate the digital horizon indicator. There is not much point in using an external viewfinder unless you need a 2-direction level (c.f. Leica Universal Wideangle Finder M) – but even then, these only really work in “landscape” orientation.

AF speed. There are varying accounts of AF speed out there. This lens has the same type of AF motor as the 35/1.4, and it is very fast in most light. If you get into low light and it slows down too much, try switching to EVF and change the size of the focusing zone. The reality is that with this lens, you only really need AF from f/2.8-5.6.

Should I buy it? This is Fuji’s second solid hit after the 18-55mm zoom. The best (if not only) arguments against this lens are (1) that it is an XF-mount lens and (2) it’s expensive. If Fuji never went beyond the X-Pro in terms of sensor technology, it’s not much of a stretch to say that the combination outperforms any 35mm film camera with a 21mm lens (and most digital cameras); moreover, with its easy manual focus, any real or perceived shortcomings of the X-Pro or XE-1 in focus are pretty insignificant. As for the price, it is not very high in comparison to 21mm lenses: in the same range as the ZM primes, a couple hundred higher than the Cosina-Voigtlander 21mm M lens, and at least a thousand less than any modern Leica 21mm.

Should I wait for the 10-20mm f/4 OIS (Optical Image Stabilization) lens? Fuji does have a zoom lens on the roadmap that covers this focal length. It will have a lot of appeal to a lot of people – but not necessarily for the same people who would be looking at a super-performing 14mm. From all available prototype pictures, it will be like the 18-55mm, with a flared front end (it takes 72mm filters).  The plusses are that it will likely have a stepper motor focusing mechanism (=fast), has a constant aperture (albeit f/4)  and will cover the 15-30mm range. On the other hand, it is huge, has no focusing scale like the 14mm, will require software distortion correction, and if the 18-55mm is a guide, manual aperture control will be easy to knock out of the desired setting. OIS is a plus – but the Fuji system draws a good amount of power, it takes a second or so to spin up in the mode where it is only activated for the shot, and can be squeaky in the wintertime.

How about the Zeiss 12mm? This is a tougher question that might be determined more by economics (it’s pricey) and aesthetics (it’s flared in a not-so-attractive way). I will be the one to speculate on this: these lenses are being made with the cooperation of Fuji, possibly in the same plant that makes Fuji lenses. That’s why they keep getting mentioned in Fuji videos and are now shown as an ancillary part of the Fuji lens road map.

# # # # #

20130417_152543