Archive | November 2015

Canon 50mm f/1.2 LTM: not screwmounting around

As you contemplate modern lenses, It is difficult to associate these optics with the proud civilizations that created them: Tokyo, Rochester, Sendai, Jena. They worshipped image quality, because it is strength that makes all other values possible. No picture survives without it. Who knows what delicate objective lenses have died out of the world, for want of the strength to continue. 

It’s a long way from the Canon 7sz to Andre Agassi, from the Serenar to the EOS Kiss Merkur XR4ti (…or whatever the amateur model of the week is). Canon used to be a hard-core producer of Leica knockoffs, many of which were more functional, convenient, and reliable than the rickety prewar designs that Leica kept elaborating. The Canon P was a standout, as were the VI-L and the 7 series.

The Canon 50mm f/1.2 (September 1956… can you believe that it is now almost 60 years old?) was the company’s penultimate halo lens. It came out with the VT (not Deluxe), and it would not be surpassed until 1961 with the Canon 7 and its 50/0.95 Dream Lens (from a size, weight, and cost standpoint, dream is clearly defined broadly to include nightmare). Ironically, the 50/1.2 cost more than the 50/0.95. Modern Canon lenses are quite good, but they don’t have that certain fun factor to them.

Synergies. This is a new thesis on my part, but I am starting to suspect that the M typ 240 and 246 tend to interact with lenses in ways that might not be immediately intuitive. Some lenses seem to work unexpectedly well with the color sensor (possibly the demosaic-ing algorithm accidentally boosting sharpness). Many lenses work better than expected with the Monochrom camera — likely because the color-bind sensor is not bothered as much by chromatic aberration. The “why” these things happen is probably insoluble; it is merely interesting that they do. And yes, some dog lenses do stay dogs, and some lenses have bad corners to f/8. Nulla regula sine exceptione.

Look and feel. Perhaps “Carré Otis” is the best way to express the relationship between the size of this lens and Canon’s more common 50mm lenses (2.8, 2.2, 1.9, 1.8, 1.5): generously proportioned, slightly flaky, and exhibiting certain, ahem, virtues.

The finish of the 50/1.2 is typical mid-to-late Canon that came into vogue in February 1956 with the 50mm f/1.8 mark II: a black enamel focusing ring and sandblasted chrome aperture ring and distance/DOF scale. This is much more pleasing than Canon’s contemporaneous all-black lenses (like the 35/1.5, 35/2, 100/3.5, 100/2, and 135/3.5), whose finish looks good in smaller lenses and feels chintzy in larger ones. But the affect with the 50/1.2 is solid. It will keep your M typ 240 on balance.

The focusing effort is heavy, and even the aperture turning is heavy. Unless, of course, lubricant has leaked out onto the aperture blades. The focusing pitch is very slow. Even the interesting push-button infinity lever takes a deliberate effort to dislodge. Is there a problem with any of this? No. Will you have issues tracking fast motion or switching from near-to-far subjects (or vice-versa) as if you were a D700? Yes.

Flare and use with filters. The first thing you have to remember with this lens is that you are dealing with an SLR-sized front element that sits very close to the front of the filter ring, seven elements, and single lens coatings from the mid-1950s. This isn’t going to flare, right?! Really, cleaning marks are the least of your problems here.

The big (physical) hazard with this lens is filters – as in don’t tighten down a filter without checking the clearance between the filter and the front lens element. If you want use conventional filters, you will likely need to use an empty ring as a spacer or fit a rubber o-ring around the threads on the filter. The only alternative is to use Canon RF filters, which are expensive and present a flush glass surface on the front of the lens. Not only does cabin your choices for lens hoods, it also presents ample opportunity for sidelight flare. Like the picture below (and let’s be fair – this is shot outdoors with floodlights everywhere). But be sure to use some kind of hood if you can.

L1000216

Canon filter ghosting (at f/1.2). All hell is breaking loose here (not surprising with Christmas lights a scant two feet from the lens), but it’s not all bad, given the motif:

L1000207

On balance, it is better to use a filter if you don’t want to deal with the rickety Canon metal lens caps, which never want to stay on. Just watch how you use it, and if you can space it correctly, consider an MRC.

General optical performance. On an M, at 24mp, the 50/1.2 really acts like Beauty and the Beast. At its largest aperture, it has microscopic depth of field, though with practice, you can tell where it is going to land. It does what most other super-fast spherical lenses do: it front focuses at wider apertures and settles down at middle ones. Every one of the three copies I have owned seems to have had slight differences in the midpoint of depth of field at close ranges and large apertures, which is not surprising. But this is par for the course; all fast 50mm lenses are testy on Leica rangefinders. As you start stopping down, the 50/1.2 becomes exponentially sharper. F/1.4 is light years better than 1.2; f/2.8 is orders of magnitude better yet.

Rather than dragging through every optical trait one at a time, let’s take it at f/1.2. Soft contrast, heavy vignetting, reasonable resolution of details, with a field that seems to curve at the edges toward the camera. This vignetting persists, even when the lens is coded as a Leica Noctilux. To be fair, this was more than enough for most 35mm film use. A lens like the Canon 50/1.2 would be used at night, where contrast would be high. It was not designed for thin depth-of-field fetishism. You can click on the picture below for a full-sized image.

IMG_5453

The picture at the top of this article is also shot at f/1.2. In terms of controlling bokeh, if you are into that thing, this is yet another lens where your best bokeh is achieved by (a) getting the subject as close as possible and (b) getting the background as far away as possible. Not to belabor a point from the previous article (on the MS-Sonnetar), but an easy and almost unavoidable rule of thumb is that the better a lens performs wide-open, the worse the bokeh. The list of these suppressed lenses is long and distinguished: this Canon, almost every Noctilux, the Hexanon Limited, the Nokton 1.1, the Nikkor 1.1, and basically any lens faster than f/1.4.

The next click, f/1.4, is a touch more contrasty, and is still a good setting to use in harsh nighttime conditions. Take a look at the field curvature here – there is no way the Gummi Bear wrapper should be so close to being in focus like the boys. Actually, it seems unlikely that both boys should be in focus, but there you have it. And here you also have the bokeh vibe. As in vibration.

L1000214

Just for fun, below is one shot wide-open with an M8 (you can click on it to see it at full size):

20071027_185039

Stopping down to f/2 gives better results yet – and the focusing point is now exactly where you would expect it to be. And here is your bokeh test outdoors. This is essentially minimum focusing distance with a background that is 50m away.

L1001209

At f/2.8, the lens is starting to hit its stride. Especially with the M set for emulation of the Leica 50/1.2, the lighting evens up, the sharpness goes up significantly, and the field flattens a bit. Although this begs the question of getting a slower lens and shooting more wide-open, with these old lenses, you are often better off with a fast lens stopped down than a slow lens wide-open. Also, the big old glass looks cooler and makes child ward nurses less likely to think you are using some kind of super-high-tech digital camera to document medical procedures (when you’re actually just bored).

L1001716

At f/4, performance starts to max out (like the 1.2 shot, you can click on the one below to get a full-sized image). You almost go into double-take mode because a good example of the lens looks sharper than lot of modern glass. I’m thinking particularly of the 50/1.4 AF Nikkor, which the Canon crushes – and likely because the Nikon is usually tied to a somewhat limited AF system (phase detect systems seem pretty much incapable of compensating for the focus shift that occurs when a lens stops down).

L1001214

IMG_5422

F/8 is where performance starts to degrade a little bit (see the full-sized image). Sharpness starts to decline. People take on cartoonish, ascetic, or vampiric features. Bring your gloves, lightsabers, and garlic.

L1001685

Conclusion? This lens was sold as the premium lens on a lot of Canon cameras – and in some ways a “bragging rights” lens vis-à-vis Leica and Nikon. The performance at f/1.2 is reasonable but not world-beating; but given limits seen even in digital M shutters (1/4000 sec), you would rarely be trying to shoot this lens wide-open in daylight. At least absent a neutral-density filter.

The pricing of this lens is all over the place; super-clean examples (from a cosmetic standpoint) seem to command a hefty premium, but almost all will exhibit microscopic scratches (cleaning marks), and oil haze is a recurring theme (and it is fairly destructive to these lenses’ coatings). But as with a lot of things, cosmetics are not indicative of performance; you never know whether a lens has been abused over the years until you actually try it.

Be ready to poke around through multiple examples to get one that works really well; keep an open mind about the condition of the coatings; what makes these lenses flare badly has little to do with the coatings but rather with the hazards of having that really big front element.

Advertisements

MS-Optical 50mm f/1.1 Sonnetar: magic time

The MS Optical Research Sonnetar is like The Life Aquatic with Steve Zissou. You either get it or you don’t, and if you don’t understand Jacques Cousteau, Willem Dafoe playing a subservient gay German, or Wes Anderson in general, there is no one who can make you like it. By the same token, if you drive Jaguars, no one with a 276hp front-drive Camry is ever going to win you over by telling you it has a higher thrust-to-weight ratio than an XJS V12 with the flying buttress hard top.

You don’t buy a Sonnetar as your only 50mm lens; in fact, you don’t even buy it as your only fast 50mm lens (and by the way, 50s should either be fast or fun – there is nothing more bland than a 50mm Summicron). The Sonnetar has strange controls for most (the rotating front barrel is exactly like using a Contax or Nikon rangefinder). It vignettes like crazy. At any distance, you can have your choice between correct focus and optical correction.

Why would anyone like it? It’s actually a big question whose only easy answer might be that when you have to shoot an f/1.1 lens in ultra-low light conditions, you pick your poison. You’re playing the limits.

N.B. All pictures shot in b/w are shot with a new Leica Monochrom (typ 246). All shots in color are with an M (typ 240). It’s absurd to change color pictures to monochrome to try to judge sharpness.

What is it? The MS-Sonnetar is the second modern revival of the 50mm f/1.5 Carl Zeiss Sonnar (West Germany, 1950s-1960s), the first one being the Zeiss ZM C-Sonnar 1.5/50mm. Why this type of lens is popular today is puzzling; when lens coatings enabled highly corrected 50mm lenses like the Planar, all of the expensive cemented groups of the f/1.5 Sonnar became obsolete. Today, the popularity of the Sonnar pattern might be in its imperfection: focus falloff in the form of field curvature and vignetting. The Sonnar yields marginally smaller and lighter overall packaging than a Planar or Double Guass, and it has slightly higher resistance to flare.

Every Sonnar revival/clone/ripoff over the past 50+ years has had its own set of strengths and weaknesses; it seems that almost none of them shows the balanced performance of the original Zeiss design. They either sacrifice sharpness for bokeh or go gaga for bokeh and live with a lot of focus shift.

The Sonnetar goes for the gusto with fewer elements and only one cemented group; a lighter, more compact barrel; and almost an entire stop of extra speed. It is the fastest Sonnar-style production lens in terms of T-stops, edging out the 50/1.1 Zunow by virtue of having fewer elements and more effective coatings.

Getting a handle on it. The Sonnetar is a very compact lens; the barrel is smaller than a 50mm Summicron, flaring out to a wider front section that takes 52mm filters (and no, full-sized B+Ws do not vignette). It’s hard to say whether it is modeled after a Zunow, a 50/1.1 Nikkor, or an Opton Sonnar. But all of them have a particular shape to them. The Sonnetar looks most like the Zunow, with the focusing and aperture rings reversed.

The frontmost ring is focus (supplemented with a small lever in the back if that’s what you want); the rearward ring is the aperture control, which smoothly adjusts from f/1.1 to f/16. Like a lot of older lenses, as the aperture numbers get higher, they get closer together (it is probably also a side effect of the Sonnetar’s super-nifty, perfectly circular German iris. But no matter in splitting hairs between f/11 and 16; you won’t be shooting there anyway.

The tough part of the ergonomics is something you’d never expect: the rear lens cap. It screws into the rear lens group, which unfortunately is also the thing that is the coma control. As for the front cap (which also screws in), you’ll probably leave that in the box with the hand-drawn spherical aberration measurements and the pretty hood. You’ll either use an MRC filter or a pinch cap to keep your fingers off the front glass.

Overall build quality. Done out in matte black chrome, the finish of the Sonnetar is a good match for a black Leica M-P or Monochrom typ 246. The black anodized finish is very tough, and the mounting ridges that you grasp to mount the lens will take bits of skin along with them. Numbers are clearly engraved and filled in white. They are legible and inoffensive. There is no way to 6-bit code this lens, since the rear flange is integral with the lens barrel (it is very much built like an old rangefinder lens with a rotating optical unit).

The glass (modified Sonnar design, more air-spaced) is perfectly clean and perfectly coated (from what I understand, MS Optical’s multicoating is a simple 2-layer). The reality is that the efficiency of modern coatings and the low element count makes internal flare a non-issue. Interior blacking is actually dark grey, which may seem puzzling, but if it’s good enough for telescopes, it’s probably good enough for camera lenses.

There are some build quality nits. One is that the lens (both on the sensor and in the rangefinder) hits infinity with about a mm of travel left in the focusing ring. This is probably an artifact of having that ring be the same part that provides the rangefinder cam. This might be of concern if you are trying to focus at infinity by feeling for a stop – and it is no different a problem than using an Asian LTM adapter that is a fraction of a millimeter too thin. It almost seems like you could just loosen the focusing ring screws and shift it so that infinity was on the stop

The other is that MS-Optical only uses a couple of actual lens mounts. The 51.6mm lens mount provides cam action that approximates a 51.6mm (Leica-spec) lens. Its frameline selection is determined by whether the mount is compressed around a notch in one of the bayonets or not. This lens uses about 90 degrees to go from 1m to ∞, which is quite short. This gives you a much faster acquisition time for focus but degrades the focus accuracy. Contrast this to 1950s and 1960s LTM lenses (and indeed the 75 Summilux), whose ponderously slow focusing rate can cause you to miss the moment completely. In any case, you are much better off using the ring than the lever because the larger diameter of the barrel provides better precision (because it takes more movement of the control surface per unit of focus change).

The $&@(!#% “coma adjuster.” The most famous feature of this lens is a “coma adjuster,” a ring around the rear element that has a white indicator dot and four distance dots (1m – white; 2m – white, 4m – red, and infinity-white). The lens is sold with an instruction sheet that tells you this is for adjusting “coma,” which would be the shape of point light sources (round or not). Why does anyone care about coma? It’s a big deal for telescopes, and that’s what Miyazaki designed for most of his life. What you get in terms of optical performance in the near range is a set of very subtle changes. Perhaps this operates better at a distance, but for its stated purpose, the adjuster seems a little bit gimmicky.

What is not so subtle is that the same control – determining the position of the rear lens group – has a tremendous effect on focus (because it changes the focal length of the lens) and on field curvature (whether the plane of focus is flat across the field or curved inward at the edges). This almost off-label use is actually very easy to exploit (see the discussion of what the directions actually say below).

Focal length control is very important on a super-speed lens. A Leica rangefinder assumes the same movement as a 51.6mm lens. Nominal “50mm” lenses that have a 51.6mm focal length can rely on simple movement of the lens cell when focusing to track from near to far at the correct rate. Shorter lenses (like 35mm lenses) have to translate a smaller amount of lens cell movement (front to back) to a relatively larger amount of rangefinder cam movement. Likewise, a 90mm lens needs the cell to move more than the cam moves. With most 50mm f/2 lenses, variances of a couple of 1/10s of a millimeter in actual focal length are not of great consequence because the lens has a little depth of field (or “fudge factor”). Lenses that have super-thin depth of field, such as an f/1.1 lens, require far more precision in their focal length to work well with a rangefinder. One can also surmise that the coma adjuster ring also serves as a calibration method for the lens that does not require reassembly.

According to the directions, this is how to use the coma adjuster ring:

Adjacent to the coma adjustment ring, you will find a white reference point (see the above illustration) to which an appropriate ring position has to be matched by rotating the ring. Using the coma adjustment system, a very high level tuning/focusing optimisation is made possible.

[…]

For Leica M Type Rangefinder Camera Users Initially, bring the red dot of the ring to the white reference point by rotating the coma adjustment ring. As you familiarise yourself to this lens, you may wish to change the ring position either to the left or right. For example, at the infinity best point, the actual focus point will be slightly brought forward (therefore, take a photo with focus point slightly backward). At the white dot that is best for 2m distance, a focus point will be slightly brought backward (therefore, take a photo with focus point slightly forward). This might take some practice and experience to achieve best results.

In real life, the tips for using this are:

  • Turning the adjuster toward longer distances will make the lens focus closer to the camera.
  • Turning the adjuster toward shorter distances will make the lens focus farther from the camera.
  • Putting the coma adjuster on 1m will cause a back focus of 15-20cm at 1m, which is not insignificant.
  • Putting the coma adjuster on ∞ will cause the lens not to focus (optically) to infinity.
  • Putting the adjuster about 2mm short of the 4m mark will produce best focus at f/1.1-1.6 from just under 1m to infinity. This is not surprising, since it is a distance of about 50 focal lengths (2.5m), which is a conventional distance at which lenses are tested. It is also apparently the setting used to measure MTF (as shown on the instruction sheet).
  • The lens will decouple from an M rangefinder at the minimum distance stop, so don’t do any testing below about 0.8m.

IN MOST CASES, YOU WILL ONLY BE MOVING THIS ADJUSTER 1 or 2MM FROM THE RED MARK. UNLESS YOU WANT TO GO CRAZY.

It really, really, really helps to have a LensAlign to calibrate the lens because you can see the zone of focus very correctly. Although you can trial-and-err it without this $80 plastic device, the problem is ascertaining the effect of focus shift. You want to hit a calibration where the zone of focus includes the intended point through as many apertures as you can – because like a lot of lenses in this speed class, the Sonnetar has under corrected spherical aberration that causes focus shift with aperture changes. The LensAlign lets you observe a band of high contrast as it moves (and expands) as you stop down. You don’t even need to shoot it head-on as you would with a DSLR; you need to check this from oblique angles too – because that is how you will focus your Leica in real life. Needless to say, if you are going to use this lens with a film camera, it helps to have a digital to get it dialed in.

Even within any calibration, the M viewfinder system (including the improved rangefinders for the M typ 240 and 246) has enough lash in it that the direction from which you focus – as well as small movements that don’t even produce a visible change in the RF alignment – can affect the focus point. So the word is “practice.” Wide-open, you will nudge to a slightly farther focused distance (without making the RF spot move).

Performance. All high-speed 50mm lenses (f>1.4) involve tradeoffs. The simple answer is that the Sonnetar has characteristics that vary depending on the coma adjuster setting, and these correspond pretty closely to the optimization differences in an Opton Sonnar, a 50/1.4 Nikkor LTM lens, and a 50/1.5 Canon LTM lens.

For most testing, I have kept the lens optimized at f/1.1 to 1/6 at distances up to 3m. It performs very well from 0.8 to 10m at f/1.1-1.6. If you get the calibration just right, you can keep it sharp through f/5.6, and it’s sharp across the field. At long distances, however, you get progressive blur toward the frame edges. This is gone at f/8. I suspect that the coma adjuster could overcome things, but distance shots are a little outside the use case for this lens (for distance, you are always better off with a slightly smaller aperture lens).

Sharpness seems to max out at f/1.6 (the dot between f/1.4 and f/2 on the focusing scale). Contrast is about double that at f/1.1. If something like the Canon 50mm f/1.2 LTM lens is your frame of reference, at wide-open settings, the Sonnetar is visibly better (and focuses far more accurately). If you are shooting at f/4 or smaller, something like the Canon provides much more balanced performance.

Here is a sequence that should show the differences at the wide apertures. If you click on the picture, you should be able to see it full-size. First, 0.8m, whole scene. Yes, the 44-year-old unopened bottle of Beam is real, as is the gaffe of keeping champagne at other than depressed temperatures. And no, I can’t explain the presence of the CFL bulb on the bar, since I own no fixture that takes them.

overall

Next, check out the difference between f/1.1 (left) and f/1.6 (right) at 100%. The apertures shown in the metadata are computed by the M typ 246, so they are not entirely accurate. There is quite a bit of contrast jump in one stop.

center-100

Next, here is the same comparison at 200%. The focus point here is the stamp “Spring 1963.”

center-200

Next, here is the mid-right side at 100%. Still holding together.

middle-right-100

Extreme left, 100%. Same story.

corner-100

Real-world, stressed out, trying to get enough distance to focus in almost complete darkness, you still get good results. This is f/1.6 at ISO 2500 and 1/12 of a second:

L1001163

And a bit better at 1/45 sec (by the way, the Last Word is something you ought to try sometime):

L1001126

And this is the obligatory f/8 shot outdoors with a G filter.

L1000791

Flare is very well controlled except in extreme side-lighting, where you can get some bizarre effects. This is a characteristic of Sonnar-type lenses. There is some “glow,” which is the normal Sonnar flare on hard dark/light interfaces that occurs when the focus point is ahead of the object. It is more visible in the preview mode of an M camera than it is in the final files. Resistance to extreme backlighting is pretty good, a lot better than with the old Canon 50/1.2:

L1000799

Here is the difficult-to-replicate total flare failure mode. You might want to use a lens hood when the sun is in the corner. Or maybe not.

L1000790

Vignetting is not going to be a huge issue at close distances, since the barrel is extended. At f/2 and down, it is not obnoxious, especially when combined with the automatic corner correction on the M8/9/240/246. If you want to go very heavy duty on perfect corrections, use the Adobe Flat Field plugin for Lightroom. You will need to shoot baseline calibrations at the distances and apertures you normally shoot. You can do that after the fact.

Color rendition can be a little weird. The “tantalum” glass in this lens (probably standing in for less-exciting sounding “rare earth”) shows mild versions of the color enhancing effects of a didymium enhancing filter (like a B+W 491, Tiffen Enhancing Filter, or Hoya Redhancer). Magenta and yellow seem to be favored here. Here are some pictures that should illustrate this. For your evaluation of secondary characteristics, this is at f/2:

L1000689

f/4:

L1000686

f/1.1:

L1000431

f/1.1:

20151010_150258

Chromatic aberration is a factor here but not in the traditional way. Wide-open, this lens tends to have the blur from adjoining colors bleed together. On an M typ 240, this looks a little bit like soft focus. On the M typ 246, this disappears completely, and the lens develops some killer contrast. This is characteristic of sticking a lot of old-school lenses on the new Monochrom body; a lot of older optical designs suddenly start looking awesome.

Bokeh is such a bourgeois concept. With spherical lenses, you either get universally good bokeh but bad focus shift (ZM C-Sonnar) or poor bokeh and reduced focus shift (50/1.4 Nikkor, 50/1.5 Canon). Unfortunately, with high-speed lenses, the latter combination (or in this case calibration) is much easier to live with. With the Sonnetar, you want to get as close to your subject as possible with as great a distance from it to the background as possible. Otherwise, you can enjoy what generation of Canon and Nikon Sonnar clones have experienced. By the way, here is a direct comparison between the bokeh of the 50/1.2 Canon and the Sonnetar. Maybe you can tell which is which?

L1001270 L1001341

Conclusion. If I did not currently own eleven 50mm lenses (just temporarily), I don’t know how I would feel about this one. That said, the Sonnetar is the one that seems to be welded onto my Monochrom. It’s quirky, it takes a lot of practice to use, and even after a couple of months of practice, there is still a lot to master. That said, it’s an elegant alternative to the Coke cans and second mortgages that tend to dominate the super-speed 50mm space.