Get a grip: the 107-year debacle of small-camera ergonomics

er·go·nom·ics | \ ˌər-gə-ˈnä-miks: an applied science concerned with designing and arranging things people use so that the people and things interact most efficiently and safely (Merriam-Webster, 2021).
In the industrial setting, ergonomics is a matter of avoiding unnecessary fatigue, injuries, and discomfort. It is intended to promote both safety and efficiency. Ergonomics was first invented in 1949, after Barnack before the Leica M camera. There does not seem to be any suggestion that any camera made before about 1970 cared much about this science. Certainly, the Leica M camera – and most other small cameras – ignored this important principle of design.
Did you know that having an opposable thumb is not necessary to grip a camera the way Leica intended? It should not be a surprise that primates and even lower animals like raccoons have the right types of hands to grab cameras. Because small cameras are not actually designed for human hands. Let’s discuss small (6×9 and smaller) camera ergonomics in six rubrics.
1. How do you hold this?
Even before ergonomics had a name, small camera design went off the rails when small cameras were invented in 1914. Oskar Barnack – who being born in 1879 undoubtedly had shorter fingers than 21st-century camera users – designed the Ur-Leica with slippery round ends encased in a textured surface. This leicapithicus wetlzarensis was designed around a focal-plane shutter that did not cap and an arrangement that required a separate viewfinder. It was light, compact (65mm top to bottom), and for its weight and intended function, workable. Because you had to put the lens cap on between shots, it was not a speed demon; you were going to take the camera down from your eye to reset for the next shot costing a king’s ransom on rare double-frames of 35mm movie film. You could almost call it the mini 4×5 of its day.
There is a trope about the solid rocket boosters for the Space Shuttle ultimately tracking back to the width of a Roman horse’s haunches. Whether or not that is true is a much more difficult question than tracing our conception of how a “small” camera should appear. The Platonic form of a camera is, after all, a Leica M3, which for dimensional purposes is a taller and heavier Ur-Leica, matching dimensions to the single millimeters. The Leica inspired many also-rans from Europe and Japan, some of which turned out to be better, but all of them have the same formula: small squarish body, lever wind, viewfinder on the left. Most fixed-lens rangefinders were actually smaller than the Leica; once you substitute a leaf shutter in the lens for a focal-plane type, the body can be even tinier.

What’s wrong with this design? If the correct method of holding it it requires a paragraph-long written description, it is not a tool that is ergonomic. Leica’s own user manuals illustrate the poor hand-fit in pictures, but the written camera-holding instructions call into question whether it is the human who is being forced to conform to a tool.
Look at a Leica III or Leica M manual. Actually, look at a bunch of them. Needless to say, the right way to hold a Leica has evolved since the days of Barnack. The first suggested M grip, which tracked how the III was supposed to be grasped, completely disengaged your left hand from the focusing ring, meaning you would never be able to refocus and re-shoot quickly. The III series has you cupping the bottom corners of the camera in the fleshy parts of your palms. At least one version of the M3 manual says nothing about how to hold the camera; the more detailed one has the corner-to-palms technique again. If you look at other brands’ camera manuals from the 1940s to the 1980s, you will see a dizzying array of hand-cramping contortions.
The right hand position has stayed mostly the same. What you are supposed to do with your left has changed over time. Here is the end point of Leica’s evolution of descriptions with the M7 and M8/M9 (the M8 is shown; the M9 has the same description with the little Ikea Man holding the camera):


“As a practical accessory, we recommend the Mx hand grip which allows you to hold the Leica M[x] extremely steadily and to carry it with one hand/while keeping your hands free.” This begs the question – why can’t you hold an M extremely steadily without another $400 doodad? And how was it a hands-free device for the M[x]?
The record – at least as expressed in successive generations of Leica manuals – reflects a variety of “right” ways to hold a camera, then “suggested” ways (M6), then “correct” (M7/M8/M9) and with the M240 and onward, no guidance. The M240, in fact, moves the discussion of the optional M hand grip to the “accessories” section at the end. I guess given the number of Leica owners with postgraduate degrees, it’s part of the 400-level course you were supposed to take before you started at this school.
What you are even supposed to do with your right thumb seems to be a matter of interpretation, some manuals showing it, some not. The M6 manual references resting your thumb on the lever “in the standoff” position. The M240 and M10 have a nub on which to rest your thumb. The M10-D has an ersatz M2/M3 focusing lever/thumbrest whose position does not quite match an original lever kicked out. The new $300 Leica thumb-rest looks puts your thumb in the same position as the M10-D. As noted at the beginning of this article, the user of one of these cameras does not need an opposable thumb. This camera might require a totally different type of hand.
Hint: if you have long fingers, a good one-handed grip on an M240 is to put your index finger on the trigger, your middle finger on the function button, and your ring finger on the front of the camera. The camera can sit on your curled little finger (imagine a C parallel to the bottom of the camera). Your thumb rests vertically against the grip nub/control wheel. See? You can control everything, and your ring finger is still available to accidentally press the lens release.
They say if you injure your leg and then limp enough, you don’t notice it any more. This is probably the only reason that Leicas (or similarly-configured rangefinders) are thought to be “ergonomic” – it’s just the way it’s been for 100 years. Were “ever ready” cases really useful for protection – or were they makeshift “fat grips” around ill-shaped cameras?
As much as things like the Argus “Brick” are lambasted for their funny shapes and palm-poking corners, something that fills the hand is not all bad. Ask anyone who shoots Olympic pistol. But you can also ask Nikon and Canon, who figured out in the late 1980s that a fat right grip is advantageous, even if your winding motor is so small it fits inside the takeup spool. In fact, Leica uses that “fat grip” design on most of its non-M digital cameras.
3. The pocketability conceit*
“But wait, the Leica [or insert camera name here] is pocketable.”
Baloney. This might be true of a tiny minority of camera/lens combinations, or 1980s-style pleated trousers, but Leicas generally have not been “pocketable” since the advent of the long aspherical lenses if not since the M3. And grip-ability does not necessarily change the dimensions that would make something “pocketable.” Is a Hexar AF less pocketable with its front grip ridge than a Leica M3 with its flat front? Hardly. Even among other manufacturers of M-mount cameras, the ergonomics have been better, whether it is a palm swell on the back door, a grip ridge on the front of the right grip, or even something like a rubber covering. I suspect it is more Leica’s user base than the company that drives the need to keep things the same. Witness the fate of the CL and the M5.
Interestingly, what encouraged (and maybe forced) small cameras to become more ergonomic was the incorporation of batteries and motors into the right side of the camera, something that came in with cameras like the Konica FS-1, Canon T-50, and Nikon F4. Even in non-motorized SLR cameras, grip nubs began appearing on the right front of the camera (as on the Nikon FA). When you think about putting coreless motors and electronics largely on one side of the camera, and motor-driven shutters in the middle, the mechanisms in the bottom become considerably less complicated (open a manual-wind, mechanical SLR’s bottom plate to see the assemblage of shutter-cocking levers, pinions, and gears). And by a weird twist of fate, the lithium cells best-suited to powering cameras (like the 2CR5) had a chonk factor that made them better candidates for placement in a fat grip.
This brings us to a cruel irony: point-and-shoot cameras in the late 1970s and 1980s frequently had better ergonomics than what we would call “prosumer” cameras today. In fact, many of them have better ergonomics than the Leica, long-vaunted as the enthusiast’s camera. And I write that as a Leica user.
On the other end of the “small” camera spectrum are the ultracompact 35mm cameras (Rollei 35, Contax T*, Nikon 35ti, etc.). In a sense, you can cut them some slack because their major purpose is to be pocketable most of the time – at the expense of handling and durability. These were designed to fit in a sport coat at the racquets club or the horse track, to be shot for fifty or so exposures, forgotten by the owner, sold at his estate sale, rediscovered by some internet influencer, and then driven to stratospheric resale prices that hold up until someone discovers one of the following things: (1) despite often brilliant optics, they are miserable to use; (2) they are not as durable as once thought. Weight versus size is also a factor in ergonomics – and many of these cameras are lightweight and despite their shortcomings, not impossible to use.
*Ok, I only wrote this heading because the Pocketability Conceit either sounds like an old-series Star Trek episode name or a Robert Ludlum novel title.
4. O Camcorder, where art thou?
My maternal grandfather, being a doctor, retired at age 55 – assuming that like most men of his generation, he would be dead at 60. This did not come to pass (he was “retired” for 25 more years…), and after a couple of years of golf got bored and moved into TV production at his local station. Being an early adopter of almost every technology that existed, he would get the latest and greatest video equipment every year. This meant at every Christmas, he would open the trunk of his Lincoln Continental and among other gifts, pull out last year’s latest and greatest video equipment and leave it to the good offices of my parents.
One thing that was always striking about video cameras (and later camcorders) – especially by contrast to still cameras – was the amount of effort put into making them comfortable to use. This was important because the early cameras were really heavy. Pistol grips and shoulder rests for the “camera” were de rigueur when the “recorder” part was a huge heavy hard square silver purse, and even when recording decks merged with cameras in the mid-1980s, the emphasis was on one-hand control operation and anything that made it easier to hold a unit steady for a prolonged period. Zoom controls have always been able to be operated by the same hand that “presses the button.”
The “camcorder” design ethos bled over into consumer “bridge” cameras – the ones designed to bridge the gap between point-and-shoot and full-blown SLR. The Canon Photura, Ricoh Mirai, and Yashica Samurai – variously 35mm SLR and viewfinder AF cameras – acquired camcorder-like morphology, particularly pistol grips that were either parallel to the lens or adjustable. They did not experience some Chicxulub-level event; rather, they just didn’t catch on. In retrospect, it is not terribly surprising; they were expensive, didn’t look like “cameras,” and tended to be bulkier than their blocky cousins.
In an ironic twist, the replacement for camcorders was an atavism. But it was also a reversion to something else. When DSLRs, particularly Canons, became popular for video, they retained their DSLR shape – which was in turn based on a film camera shape dictated by a 35mm frame and the necessary film drive. This spawned an industry of workarounds – cages, grips, handles, and all kinds of other accessories that serve as indictments of functional design. Sony’s selection of a “quasi SLR” design for the A7 series is baffling; the a6x00 series is both more comfortable and (lacking a silly fake pentaprism bulge) true-to-function (as is the new A7C), especially when misused for video.
5. Left eye, right eye, leave me alone
About 25-30% of the human race is left-eye dominant, being made up of about 1/3 left-handers and 2/3 people who are right-handed but use their left eye for tasks involving critical focus or alignment. Eye dominance cannot be changed; this is a matter of hard-wiring from an early age. It is not a matter of visual acuity; it is a how efficiently one eye communicates with the brain.
For people who are left-eyed, cameras with left-side viewfinders automatically cause ergonomic problems with the use of top-mounted winding levers and cutesy “thumb grips.” On most such cameras, winding the camera requires you to move your eye from the viewfinder so you do not poke yourself in the right eye with a winding lever. This is disruptive. The Retina IIc and IIIc, as well as the Canon VI-T avoided this by moving the winding actuator to the bottom – and the Konica IIIA and IIIM avoided this by moving the winder to the front. Although the original Leicavit trigger winder was designed to speed up the knob-wind of the III series, the Leicavit M:
…allows experienced photographers to shoot up to two frames per second without taking the camera from their eye
The only reason you would need a bottom trigger winder to take two frames per second without taking the camera from your eye… is that you are left-eyed. This is likely the same reason that people tolerated Leica’s relatively sluggish motor winders.
Perhaps the most befuddling thing about left-viewfinder cameras is why users are in manuals are shown with both eyes open (left eye just hanging out there; right jammed against the viewfinder glass). For a right-eyed person, this means that your mind will be trying to reconcile a reduced viewfinder picture with an unaided non-dominant eye while supporting the camera against half your face. Consider also that the center point between your two eyes is now even further from the lens axis. If anything, the left eye should be closed.
If you look through the viewfinder with your left eye, conversely, you can jam the camera in a 3-point brace between your nose and eyebrows and block your other eye with the camera body. And it is here that people of Neanderthal ancestry have a secret weapon: brow ridges.
Blessed are those, I guess, who are left-eyed and have access to left-viewfinder cameras without winding levers. For they shall inherit the stable hand-hold.
SLRs are more egalitarian: with their center viewfinders, they exist to oppress everyone. And we shall know their users by the leatherette and film-minder-window patterns impressed into their noses.
6. TLR/MF/UC – WTF?
There is only one reasonably ergonomic twin-lens reflex: the Minolta Autocord, which allows you to hold the camera and focus without shifting your left-hand grip — and to fire and advance with your right hand. This is a massive improvement over the Rolleiflex’s insatiable need for constant hand-shifts (or having three hands if you use the pistol grip). Even in the Rollei’s end-state – the 2.8GX with its huge focusing knob – the operation is barely comfortable. The persistence of TLRs after the war is a strange thing. Germany always wanted to make medium-format SLRs, and a twin-lens was a way of approximating that before the mechanical engineering caught up. But the TLR, especially when used at waist-level, causes strange camera-to-subject angles for humans and is not the easiest thing to focus (at least Rolleis are not – an Autocord ground glass is slightly easier). Rollei stopped developing twin-lens cameras in the early 1960s, eliminated serial production of the F in 1976, and moved on to its own SLRs. Note that the user of the Rollei in the diagram below is not wearing a tie. This is an important safety tip. Neckties had a tendency to get ingested by the Automat’s film-detection roller, leading to asphyxiations. That is why seasoned Rollei shooters only wore ascots or bowties.

But more seriously, medium format has always struggled with how its cameras should be configured, starting with the Brownie that kicked off the 120 format. Some are boxes (like Hasselblads), some are oversized 35mm cameras (Fuji 6×9, Pentax 6×7). The earlier Pentax can be fitted with a bulky, heavy, and still somehow uncomfortable wooden grip. The 67ii finally got the message about having something of a right-side grip.
Other medium format cameras are standardized around Graflex-style film backs that were designed just after the war and make what would otherwise be slim cameras extra thicc. If a Horseman SW612 had a body with integrated film transport, it would probably be slightly wider but a lot thinner front-to-back. The Graflex-style roll back almost always requires an extended or set-back viewfinder so that you can actually put your eye to the eyepiece. Its principal virtue is that it is narrow, but it also sports a complex film path that brings you to this: if you have interchangeable backs, they are sufficiently slow to load that you probably need more than one.
Conclusion
There have been a few scattered ergonomic successes, like the Vivitar flash grip, the Linhof 220, and those camcorder-like SLRs and point-and-shoots from the 1980s. But those are exceptions to the apparent rules of camera-making: (1) all cameras must be boxes or cubes that don’t fit in the hand and failing that, larger versions of smaller un-ergonomic cameras; (2) all winding must require a hand off the camera or disrupted framing; (3) thou shalt never use the [left] side eye; and (4) if you don’t like what we’re offering, stuff it.
Fuji’s X-series aperture rings?!

I was trying to finish a writeup on the Sony A7r2 with a 35mm lens versus Fujifilm X100-series cameras and got off on this tangent, which became too much of a distraction to appear in the other article. Sorry to drag you along for this ride, but it’s a gloomy, rainy Saturday afternoon, and it was either finish this or develop 12 rolls of film…
Someday, when Fuji is put in a room with bright lights and given the leather-glove treatment, it might be able to answer the question of why X-series lens aperture controls turn right toward their smallest apertures (or A). Although this sounds like a trivial problem, this kind of thing can and does cause momentary confusion when you are using two kinds of cameras at the same time. I discovered this over time when an X100T was one camera in use and a Leica M was the other. I’d end up with a little bit of confusion in aperture priority momentarily. The most frequent error was cranking the Fuji lens to A instead of to 2.0. Not a huge problem in terms of getting some shot — but perhaps a problem in getting the shot I actually wanted.
The way controls work is actually a big point of study, and the stakes with cameras are quite low. The stakes can be quite high in other contexts like aviation. Most of us encounter mild annoyances like badly-designed remote controls, Apple Watches, and manual transmissions that have reverse in a bunch of different inconsistent locations. Luckily, a digital camera is not an airliner, but you get the point. And the more tired someone is, or the more stress he or she is under, the more likely there is going to a problem. And photography can become stressful.
The point that was going into the other article is that “any manual control system that has sufficiently annoying quirks will encourage the use of automatic systems to avoid it.” If you take issue with that, consider how little you have actually used manual focus on AF-capable Fuji XF lenses. Their focus direction might have been a problematic issue as well, but frankly, the focus-by-wire is so terrible that everyone just uses the superb autofocus.
Digital camera viewfinders are pretty poor examples of human-machine interfaces. They are cluttered, they show numbers as digits and not graphically, and and there are too many things going on. This is a fault of pretty much every digital camera (except for Leicas, whose viewfinders have 8-segment LED displays that convey virtually no information).
One major point of the X series is to present tactile controls. The X-series aperture ring, both on the fixed-lens camera and interchangeable XF lenses, is a control-by-wire actuator that could have been designed to work in either direction. Perhaps more remarkably, it was designed both opposite to the Leica rangefinders the X-100 cameras and X-Pro cameras visually mimic and also opposite to about 60 years of Fuji’s own rangefinders.
This is not the first time an “Opposite Day” has happened; in 1998, Leica reversed the direction of the M film camera’s shutter speed dial for the M6TTL, and people went out of their minds. The problem was that on a Leica, LED over- and under-exposure arrows previously told you which way to turn the shutter speed dial or the aperture ring.* They were now inaccurate as to the shutter speed dial. With the M7 and then the digital M8, M9, M240/246/262, and M10 people just put the dial on A and left it.
*By the way, Leicas only had acquired LED meter indicators in 1984 with the M6, so people only had 14 years to have their brains calcify around the way the meter was supposed to work with the LED indicators. Previous Leicas, laying aside the M5 and CL, had no meters at all.
Back to the story. Now which systems turn right toward minimum aperture, like the X100n and the X-series mirrorless cameras? Rangefinder systems are color-coded red and Fuji’s own rangefinder systems bold and red.
- Fuji’s X series 35mm SLRs
- Nikon F lenses (historic ones)
- Canon FD
- Pentax K
- Pentax 6×7 SLRs
- Bronica RF645 rangefinder
- Canonet rangefinders
- Contax/Nikon rangfinders (not produced since the 1960s)
Which systems turn left? This is a start:
- Leica screwmount (including clones by Avenon/Kobalux, Canon, Konica, Minolta, Voigtlander)
- Leica M lenses (including Minolta M-Rokkor, Konica M-Hexanon, and Voigtlander VM)
- Fuji V2 35mm compact rangefinder
- Fuji 6×7 and 6×9 interchangeable lens rangefinders
- Fuji GW and GSW series 6×7, 6×8, and 6×9 rangefinders
- Fuji GS645S and GS645W rangefinders
- Fuji GW670 rangefinder
- Fuji TX / Hasselblad X-Pan
- Contax T rangefinder
- Contax G compact interchangeable-lens camers
- Mamiya 6 and 7
- Minolta Hi-Matic
- Plaubel Makina 67
- Fuji GX680 SLR (if the lever could be equated to a ring)
- Copal and Seiko medium-format shutters (same note) (and Fuji G617/GX617)
- Rollei 35/35s
- Olympus Pen
- Leica SLRs
- Minolta SLRs
- Konica SLRs
- Olympus OM SLRs
- Contax SLRs
Talk about being on the wrong side of history… The vast weight of rangefinders over history, particularly the ones the X series was intended to evoke… went the other way. What is inexplicable in this is that the X100 and XF-mount cameras were clearly very carefully designed from an aesthetic and basic control layout perspective. For reasons probably known only to one or two engineers, Fuji took a flier on this one. Was the idea to bring back the glory days of a Fuji 35mm SLR system that the world had forgotten? Left-handed designer? Conscious counterculture?
It is difficult to believe this was an oversight. But it’s also difficult to divine why it would have happened.
Funleader 18mm f/8 Caplens M-Mount

I’ve always thought of myself as a fun follower, not a fun leader. Well, someone had to try it, right? Two weeks and $179 later, I got a small package from China via City of Industry, California. I almost threw away the lens by mistake. The following will be a brief initial review of yet another interesting lens from China’s burgeoning camera lens industry (another example is the Venus Laowa 15mm f/4.5 shift, reviewed previously).
Funleader is a somewhat obscure company. I actually saw the lens on a targeted Facebook post, making that pervasive surveillance useful to me for the first time ever. The company makes two versions of the Caplens and a drop-in conversion mount to put the 35 Contax G Planar on Leica M bodies. Everything appears to be designed by Mr. Ding (who is the counterpart of Venus’ Mr. Li).
The Funleader 18mm f/8 cap lens / Caplens / whatever is a follow-on to the company’s original 6-element ultrawide-in-a-cap. The difference for Leica M mount is that the lens can actually focus, which is a big deal because f/8 is not quite pan focus for an 18mm lens. The focusing mechanism on the lens is a little lever with a rotating cell. The focusing scale is marked 0.45m, 0.7m, 1m (with a click), 2m, and ∞. This lens is designed for Leica M mount, though in a future installment, I will plug it into a Sony A7r II and a6300 just to see what it does with those.
My assessment of this lens is that it is shockingly not bad. It’s pretty clear that this takes a direct shot at the MS-Optical Perar series of lenses costing five to six times as much (depending on what fetishized finish the Perar features). You’re not expecting the Funleader to compete with a ZM 4/18mm Biogon (which is still five times the price and ten times the thickness…). Let’s do the quick run-through.
Construction. The lens is solid aluminum, decently finished. Mechanical action is nice. All markings are engraved, or at least etched through the anodized finish. This includes the obnoxiously large “FUNLEADER” logo, but a little Sharpie marker will make that less visible. The lens comes with a rear lens cap, but it’s somewhat puzzling that there is no front cap (it would take a 36mm push on, notched for the focus lever). There are no filter threads. The lens weighs 40g, or about 1.3 ounces. It’s not much bigger than a body cap, hence, “cap lens.”
Focus. The lens is not rangefinder-coupled, though the mount will cause the camera rangefinder to read a little over 2m. If you can validate the correct focus-lever position on the lens so that the optical focus matches the RF, you will have at least one place where you can precisely focus. To do this, you need to use LiveView or an EVF. The 1m click stop on the lens is good for moderately close objects. But if you really want to be precise, you will crank it to ∞ outdoors and use an EVF indoors. Or focus-bracket. The Leica M EVFs can easily work with lenses at t/16, so this is no challenge. What might be a challenge is that indoors, you will be on a high-ISO marathon and that focus peaking may require some judgment calls. Fortunately none of those calls are difficult.
Aperture. The iris changes quickly and easily from f/8 to f/8 to f/8 and then back to f/8.
Sharpness. As noted, focus does make a difference, and it seems from looking at prior tests that the original Funleader Caplens (fixed focus) did not have a small enough aperture to cover all distances. Although the caplens is not critically sharp on infinite subjects (like a lot of wides, you are actually best advised to shoot close-to-mid distances), it does have enough bite to work. The following two pictures are scaled down to 3000×2000, but they will go large enough to see that the lens is actually more than passable. In fact, it’s embarrassingly good in some ways (but read on). There is little or no “smearing” at the edges, but where that appears in other Leica-mount lenses, it disappears by about f/8 anyway.
Near (M typ 240):

Far (Monochrom Typ 246)

Casual tests reveal sharpness consistent with at least the 10lp/mm metric shown for the lens if not also 30lp/mm.
Distortion. There is actually vanishingly little distortion at 1m and on. No sample picture is distortion corrected, or even cropped. This is not a symmetrical lens, at least not obviously, but it does have the same straight lines. Distortion is spherical, from the looks of it.
Falloff. Ok, there is tons and tons and tons of falloff on this little guy. Corners are 1-2/3 stops darker than the center. The M typ 240 metadata generator says variously that the exposures are f/8 or f/11 overall. M cameras compare on-sensor exposure with a small photocell eye. The measurement is not perfect, but it can often be very close.
Color shifts (Leica M cameras). This one suffers from the modified bandiera italiana effect, shifting substantially purple on one side and bluish-green on the other. The exact left-right balance seems to depend a bit on the angle between the light source and the lens. The color-shift effect is an artifact of Bayer sensors, complicated sometimes by the microlenses on Leica sensors. You knew that was coming. But it’s an issue on many lenses, particularly symmetrical wide-angle lenses. The “center” can be manipulated slightly by pushing the lens hard from side to side. On some M cameras, there is just enough tolerance to shift the lens on the camera bayonet slightly (the lens flange is slightly smaller than an M body mounting flange).
The color-shift effect should be correctible using Adobe Flat Field. If you even care enough to worry about it.
The Leica Monochrom cameras could care less. They are colorblind anyway. The color shift actually helps darken skies in b/w landscape shots (the picture above was actually taken in bright overcast).
These color shifts should not be as pronounced with film cameras, but film cameras would likely yield poorer sharpness due to the inability to check focus.

Performance on Sony A7R2. Since the optical part of this lens was originally developed for mirrorless cameras, it is not much of a surprise that it performs well with them. Some notes:
- The A7R2 viewfinder is capable of displaying images from f/8 lenses with no problem.
- It is a bit easier to focus with the A7R2 focus peaking than with the M cameras.
- The image stabilization function makes up for the slow maximum aperture. Image stabilization does not fix moving subjects.
- Sharpness is good across the frame. Focus looks correct with a Novoflex ($$$) M to Sony E adapter, and infinity focus may be affected if you use cheaper adapters that are “thinner.”
- Color-shift problems are fairly neglible. Vignetting is still there. The vignetting looks symmetrical, but the color shift makes it look a little lopsided.
Spring Blossoms Yes, the fabric blinds are grey, not purple. Try to keep your camera strap out of the quasi-dashcam picture.

Room for improvement. Funleader, if you are reading this, here are a couple of things that would make this lens more fun. These are not critical, but they would improve the user experience a bit.
- A front lens cap, rubber. This lens makes a camera pocketable, so why not protect the glass from the things people carry in their pockets?
- Depth of field marks (this would just need to be two tick marks on the rotating part of the lens).
- 6-bit coding (achievable through simple engraving of the back on the black version).
- An Adobe Lightroom correction profile.
- Wider flange. The lens flange is not quite as wide as an M-camera’s bayonet mount. It would be helpful to have more of a grip surface for mounting/unmounting, since Leica M cameras have very stiff bayonet springs.
- Some way to mount filters – magnetic ring on the front?
- Optional f/16, f/22, and f/64 Waterhouse disks to drop over the lens. When shooting in bright sunlight, it makes sense to stop down. It’s probably not practical to put an iris in a lens this small.
Initial Conclusion. The Caplens is an interesting and creative democratization of the MS-Optical Perar line of lenses, not so fast but a lot cheaper. The performance is surprisingly good, especially given the number of pans of the prior version in reviews. It’s not a 4/18mm ZM Distagon, and in color, it has some Lomo-ish (or 4,5/21 ZM Biogon) characteristics, but all in all, it’s a very nice lens for the money.
Sony GPS-CS3KA: we’re all seekers

Sometimes you see a photo accessory and wonder, “where the hell were you all this time?” And the answer is, “it was too easy, so Sony canned it.” The GPS-CS3KA (“GPSman?”) is a smallish box, maybe two-thirds the size of a Metz 26AF flash. It only really does two things: (1) keeping a track log from GPS signals it receives and (2) writing them to the JPGs on your SD card.

A reasonable solution to a stupidly common problem?
Wait? What? Most GPS solutions for cameras have been pretty terrible. For reasons that are unclear (perhaps metal covers), high-end cameras have not had built-in GPS. In fact, few cameras period have it – aside from the ubiquitous iPhone or Android. This leaves you with some suboptimal options:
- Keep a tracklog with a separate device (GPS watch, tracklogger, battery-intensive phone app) and marry the coordinates to the files in Lightroom or Exiftool.
- Use a separate device with Bluetooth to feed coordinates into your camera’s remote port (a la Red Hen).
- Use a clunky GPS add-on that takes up both your remote terminal and hot shoe (looking at you, Canon and Nikon).
- Try to graft an NMEA cable to your DSLR’s accessory port.
- Use a clunky grip with GPS built-in (Leica Multifunction Grip M)
- Stick a GPS in some other accessory, like an EVF that you might otherwise not user (Leica EVF-3).
Sony quite possibly solved this problem by accident with the GPS-CS3KA, which takes a reading every 15 seconds into 128mb of memory – and when you insert an SD card will look for the closest matches and tag your JPGs in batches of 60. I say “by accident” because operation is far to simple for a Sony (at least compared to a Bravia TV). There are only three options:
- GPS: display GPS screen – hitting enter gives you different permutations of time and GPS coordinates.
- Match: automatically counts the number of files to be tagged and only lets you start or cancel. Matching stops the GPS reception.
- Tools: set the time zone, undo-ability, and erase internal memory.
How does it work?
- Stick a single AA battery in one slot.
- Set your correct GPS plus or minus time zone (as I write this, -400 for Eastern).
- Turn on the machine.
- Shoot a bunch of pictures.
- Put your SD card in the slot.
- Use the “matching” function to assign locations (use “undo” to clear all of the data you just wrote).
- Repeat as many times as necessary in batches of 60 files.
- Done.
Note that when you initiate a card matching session, you may lose the GPS signal – but then again, you won’t be shooting pictures while your card is in the device.
Performance
GPS performance is actually quite good. Cold start will grab coordinates within about a minute; on a warm start, about 10 seconds. Your initial startup will be minutes as the device updates its GPS satellites. The device apparently can read a signal in many indoor settings, which is neat. Or scary.
My performance tests on accuracy landed this within about 15 feet of where I was standing. It does read out in minutes and seconds too. For most purposes, it suffices to see degrees to know that it’s locked on.
Observed battery life with alkaline was about 12 hours. Not terrible, considering how much power this probably draws.
I did not test the Sony software, but I did note that connecting the USB cable does not bring this up as a drive with an easy-to-access GPX log.
Where does it work and not work?
I tried this a Sony A7rii and with cards up to 64gb. The results were better than expected for a device this old.
Cards that work: up to 32gb only, the faster the card, the better (realistically, that’s a Sandisk 95mb/sec card).
To be safe, I would recommend using SDFormat and not opening cards with files on a Mac before encoding. Macs tend to throw indexing files on disks that are invisible to the user but can hang up particularly primitive embedded devices (of which you should assume this is one).
Cards that don’t: 64gb and up; WiFi-enabled cards. I suspect that 64gb is outside of the ability of the device to read cards (even devices that read FAT32 sometimes cannot address an entire card). You get “matching error” as your only clue. As to WiFi, my best guess is that since it works for a couple of frames and then blanks, that the card sees that x files have been read and that it’s time to turn on the WiFi. The problem is that one AA battery doesn’t have enough power to allow that. In my testing, there has been no way to shut off the FlashAir’s desire to start transmitting (unlike EyeFi, which could be set to transmit only images that were write-protected).
Files that get encoded: the spot of bad news is that the current ARW raw format doesn’t get location data with the Sony GPS. But since the device will record location data onto almost any JPG, it will work equally well (or poorly) with many types of cameras.
Assessment
Within the limits of a certain card size, and therefore speed, the Sony GPS does allow a relatively automated geotagging process for JPGs. Like Lex Luthor’s henchmen, it has “one job.” But unlike those people who never succeded at killing Superman, the Sony performs that job well.
Notably, you can generate tracking data usable with multiple cameras, since you can insert SD card after SD card and use the same body of GPS data to code files shot in the same time period. This is a bit more flexible than solutions that would have to be transferred from camera to camera (or just duplicated with good old cash). It does require than your cameras’ clocks be synchronized reasonably closely.
It does not solve the problem of writing geolocation data to RAW files (Lightroom, for example, simply ignores this data if you import both tthe RAW and the JPG), and no one will likely ever solve the mystery of why cameras don’t have inbuilt GPS. But it’s a lot better than trying to marry track logs and files by manual labor.
A new use for Duplo®

Who says Lego bricks are only good for causing foot and back injuries?
Welcome to the world’s crudest 3D camera: four Duplo bricks, two DxO One cameras, and about half a meter of packing tape. With a stereo separation of about 120mm, forget about taking pictures of anything closer than 15 feet. But oh, the scary places you will go.
Surprisingly, with the OLED-frame-assist function on, the cameras don’t have much trouble focusing on exactly the same subject, which solves one weird technical hangup.
The 51.6% solution

This is just a quick note on a technical problem that plagues digital Leica cameras when used with older Nikkors: back focus. It is gratifying to know that Leica has finally recognized that many of its lenses don’t work so well on digital Ms due to “focus errors” that allegedly compound over the years. The real reason is probably more that film planes are actually and unintentionally curved, and a lens that makes the grade at the center there back-focuses elsewhere.
I was struggling a bit with a 10.5cm f/2.5 Nikkor, which though absolutely lovely aesthetically is one of the worst-engineered Leica lenses ever from a mechanical standpoint. And it back-focused. It back focused more with some Leica M adapters than others, but still.
Strike one with this lens is that the aperture unit rotates along with the entire optical unit. This means that if you adjust the collimation washer (for reasons I don’t fully understand, it’s always 0.05mm needed with any lens – just about the same thickness as Scotch tape), you also then have to reset the aperture ring to read properly. Also not 100% sure that infinity optical focus was really the problem.
Strike two is that the amount of front cell movement needed to compensate for back focus is absurdly great. So here, you’re messing around with focal length, but this the same way the MS-Optical Sonnetar gets calibrated…
Strike 3 is that the RF cam is not adjustable at all, with the tab pushed by a plunger running on a wheel that fits in a spiral track in the helicoid. Guess how this tab was adjusted for infinity at the factory? With a file. It makes sense, in a way. Calibrate the fixed infinity point on the focal plane by shimming the optical unit, calibrate focus at infinity by grinding the RF tab, and fix close focus by shimming the front cell. But it utterly sucks when you find out, 60 years later, that the tolerances that looked good on film with a Leica IIIc look like holy hell on digital.
So when you are dealing with focus errors, you have to imagine that the standard is a 51.6mm lens. At that focal length, if the RF matches the film-plane focus, the focus will always be correct, even if the infinity stop of the lens is beyond “infinity” on the scale.
For a telephoto lens, the rear cam still pretends it moves like a 51.6mm lens, but the actual optical unit moves much further. Hence, in a lot of cases, you can simply use a thinner LTM adapter (I think I’ve written about this before… somewhere). Most cheapo ones are thinner than the 1.0mm they are supposed to be.
But there is a different way to hack this with the 135mm, 105mm, and 85mm Nikkors: simply apply a thin and even coat of clear nail polish to the RF tab on the lens. This is a trick that you could theoretically do with lenses that have a rotating RF coupling ring (not tab), but it works exceptionally well with the Nikkors because the camera’s RF roller simply rests on the tab and doesn’t roll along it. This means that you only need to get the coating thickness right over a very short distance. Materials needed:
- Sally Hansen clear top coat (not “nail nourishing,” just the hard kind).
- CVS Beauty360 brand Nail Polish Corrector Pen (essentially a marker full of acetone that you can use to thin or remove extra nail polish).
- LensAlign focusing target (if you own a Leica, you really want one of these anyway, just to figure out what the devil all your lenses are doing as you stop down).
- Reading glasses.
So basically all you need to do is put a very thin coat of polish on the polished surface of the tab. Let it dry for 20 minutes. Here is the goal:
- At f/2.5, your focus should be such that the 0 point is barely focused, with most of the DOF in front.
- At f/2.8, your focus should be dead-centered around 0. The lens is actually way sharper here than at f/2.5. Doesn’t seem like much of an aperture change, but it is.
- At f/4, your focus will be such that 0 will barely be in focus, with most of the DOF to the rear.
- From f/5.6 down, the DOF will grow so that 0 is always in focus.
If it works, you’re done. The focusing errors this might induce further out are subsumed by depth of field increasing. If you need another coat, add one. If you are now front-focusing too much, use the Corrector Pen to remove some of the extra (or use a very fine nail buffer to remove some).
Never file or try to grind down the tab if your lens is front-focusing. Unless you can do it totally square, your lens will behave differently on different cameras. Leave this situation to a pro.
Konica 35/2.0 L/UC Hexanons

This is an article originally written in 2001; with a lot of updates.
How did these things get started?
The former Fujisawa-Shoukai had quite a bit of pull over Konica. Recall that by 1992, Konica had made what was seen as its last serious film camera, the Hexar AF, with its legendary 35mm f/2 lens. F-S, as we will call it here, commissioned in 1996 a run of Hexar lenses in Leica thread mound (LTM). This was long before the what people in the U.S. called a “rangefinder renaissance;” in fact at the time, very little in LTM was being produced in Japan, with the exception of the Avenon/Kobalux 21mm and 28mm lenses.
The first product of this program was the 35mm f/2L Hexanon, which looked like this:

This lens is simply a clone of the Hexar AF lens, right down having the same filter size. The coatings look identical, which is not a surprise. Consistent with some other contemporaneous LTM products, it did not have a focusing tab. On close inspection, the scalloped focusing ring looks like that on a Canon 35mm f/2 rangefinder lens, or more contemporaneously, the 21mm Avenon/Kobalux lens. The chrome finishing on an alloy body is reminiscent of modern-day ZM lenses. None of this, of course, will disabuse you of the notion that the Japanese lens production industry revolves around common suppliers. This lens shipped with a black flared lens hood (no vents) and a bright sandblasted chrome “Hexanon” lens cap that fit over the hood.
F-S would then go on to commission the 50/2.4L (collapsible) and 60/1.2L Hexanon lenses. The latter is famously expensive now; I have an email from F-S where it was 178,000 yen (about $1,400). The 50/2.4 will get its own article here.
In 2000, around the time that Avenon was re-releasing its 21mm and 28mm lenses as “millennium” models, F-S had another run of the 35/2 made. These were at least superficially different from the silver ones:
- At the time, black paint was all the rage, so the lens was executed in gloss black enamel and brass. The enamel in the engravings is almost exactly the Leica color scheme.
- The filter size decreased to 43mm, the aperture ring moved back, and the focusing ring thinned out to give the impression of “compactness” and justifying the “ultra compact” – UC designation that was historic to some Konica SLR lenses.
- The focusing mechanism changed to a tab (which helped justify the thinner focusing ring and lighter action).
- The coatings changed to a purplish red to help support the notion of “ultra-coating.” As you might know, multicoating can be customized for color.
The close-focus distance (what would be the third leg of a UC designation) and focusing rate of the helicoid (0.9m to ∞ in about 1/4 turn) and overall length did not change. The new lens was priced at 144,000 yen, which in dollars would have put it at just under the cost of a clean used 35/2 Summicron v.4 (at the time, these ran from about $700-1,200) and about half of what a Leica 35mm Summicron-M ASPH would cost.
Handling versus Leica lenses
Since both of these are optically identical, it might make more sense to discuss the ways in which these are similar to, or different from, the vaunted Summicron v4 King of Bokeh License to Print Money®. They are both like the Leica version but in different ways.
The UC has the same smooth tab-based focusing as the Summicron. It is very smooth and fluid. That said, the aperture ring is very “frictiony.”
The original L has a focusing feel a lot like a Canon RF lens, owing to the similar focusing ring, which has more drag and no tab. The aperture ring, however, has the same “ball-bearing-detent” feel as the Leica.
The overall length of all three lenses is similar, though as noted above, there is something of an illusion that the Leica and UC are smaller than the L.
Optics
The Konica lens, like the Hexar lens it was based on, is a clone of the 3.5cm f/1.8 Nikkor rangefinder lens, but for all practical purposes, the Hexanon is the same lens as the Summicron 4. As you can see, there is a very smooth falloff from center-to-edge wide open and pretty much eye burning sharpness at f/5.6,


Whoah. That looks familiar! Below is the Leica 35/2 v4 as shown in Puts, Leica M-Lenses, their soul and secrets (official Leica publication). Except the Summicron’s optimum aperture is a stop slower.
On interchangeable-lens bodies, all three lenses have the same focus shift behavior, requiring a slight intentional back-focus at f/2 and front focus up to f/5.6. It’s not like on a 50 Sonnar, but it’s there.
Should I?
The original chrome version is a lovely lens and a nice match for chrome Leicas, at about 1/3 the price of a chrome Summicron v4 (yes, they exist…). If you like Canon lenses, you’ll be right at home with it. On the other hand, the UC version is smooth and sexy but getting to be as expensive as a 35/2 Summicron ASPH, which is actually a better lens.
DxO One: Liberté, egalité, insanité
My first DxO One (version 1, $125 new on clearance) bricked when I upgraded the firmware. Left with an inert toy while Amazon dug up another one to send me, I could not help but play with the dead one. I flew it up to the water/ice dispenser on the refrigerator. “Open the pod bay doors, HAL.” Nothing. The DxO One rotated 180 degrees so that it could eject the micro SD card into the…
“Dad, what are you doing?”
“Uh… nothing.”
But seriously, the DxO One is one of strangest and most wonderful cameras to come out of France, or anywhere. Here’s why.
Sensor. The camera uses a 20Mp, 1″ Backside Illuminated (BSI) sensor (3x or so crop factor) made by Sony, the same one as on the RX100III. Two things make this a standout here: first, BSI sensors are quite good – meaning this returns results almost on par with the Sony a6300’s copper-wire conventional sensor. Second, almost all sensors perform equally at base ISO. In the software design, DxO biases the camera toward lower ISOs and wider apertures (which makes sense, since a 1″ sensor starts diffracting at f/5.6).
How does this compare to an iPhone XS sensor? Well, it’s almost 70% more resolution and 6.7x times the surface area (116mm² x 17.30mm²). Do the math. All the computations in the Apple world can’t make up for this type of difference in displacement. This does expose the genius of portrait mode, though – because not even a 1″ sensor is big enough to have easy-to-achieve subject isolation.
The sensor is used for contrast-detect AF (with face priority).
Lens. 32mm equivalent, f/1.8-11 aperture, six groups, six elements, with some of the weirdest aspherical shapes imaginable. It’s very tough to find a lens on a compact camera that approximates a 35/1.8. But here you are.
Far from being telecentric with an expected “folded optics” path, the DxO One uses the cellphone method with almost zero distance between the rearmost element and the sensor. The rearmost element looks like a brassiere. Like this:
The lens is happiest at larger apertures (f/2-f/4).
Storage. The DxO One accepts standard MicroSD cards. I was able to test up to 128Gb cards (Samsung EVO Plus), and it is able to read and write to them with no issues.
Power. Power comes from an internal battery but can also be fed directly from a micro USB cable. The battery takes about two hours to charge and does about 200 shots. Version 2 of the camera has a removable back door to accommodate an external battery pack DxO no longer sells. You also lose the free software (see below).
Viewfinder. Your choice of two. You can plug the camera into your iPhone, where you can use the DxO One application and the phone screen as a viewfinder. Alternatively, version 3.3 of the camera firmware turns the little OLED screen on the back into a square contour viewfinder, good enough at least to frame the middle square of the picture – and surprisingly good at estimating a level angle for the camera. You could also split the difference with a Lightning extension cord.
Connectivity. The camera was originally designed to connect via the Lightning port, but DxO enabled the onboard WiFi so that now you can use the application on the phone and control the camera (including view-finding) without a physical connection. The DxO One can also connect to your phone via your home wireless network. WiFi operation – no matter what the camera or phone – is not as much fun as it first sounds – which is why the DxO product is more flexible than Sony’s wireless-only solutions.
Software. In terms of the camera’s software, all the magic is under the hood. The camera switches on by sliding open the front cover (slide it all the way, and the Lightning connector will erect itself). There is a two-stage shutter button on the top and you can swipe up and down on the OLED to switch between controls and viewfinder and left and right to toggle photo and video. The camera stays on the exposure mode last selected from the DxO software on the iPhone.
The DxO One phone app is well-done and responsive. You can use it to frame, shoot the picture, and control what you want. Features include:
- JPG, Raw, and Super Raw (stacked) exposure modes.
- Single-shot, timer, and time-lapse settings
- Flash settings
- Subject modes and the usual PSAM modes.
- Program shift (between equivalent exposures with different shutter speeds or apertures).
- Single AF, Continuous AF, On-Demand AF, and Manual focus (manual includes an automatic hyperfocal calculation if desired).
- Matrix, centerweighted, or spot metering.
- Grid compositional overlay.
- “Lighting,” which is like a mini HDR compressor for JPGs.
You can also look through the exposures on the camera/card and move them to your phone as desired. As noted above, though, you do need to initiate wireless connections with the camera connected.
If you get a version 1 camera, new, it also comes with DxO Optics Pro 10 Elite (now Photo Lab 1 Elite) and DxO Filmpack Elite. But you have to be able to document that you are the original owner of the camera. Both of these can run as standalones or can be external editors for Lightroom. Photo Lab 1 is also capable of replacing Lightroom.
If you get version 2, you’re out of luck. But you do get a 4gb SD card and the detachable back door for that battery pack.
And either way, you do get DxO OpticsPro 10 for DxO One, which gives you a nice imaging/digital asset manager that can composite SuperRaw files. SuperRaw is a stack of four successive (and extremely rapid) exposures that cancel out high ISO noise.
And if you don’t like any of that, the DxO One outputs normal DNG files that you can simply edit to taste in Lightroom. There is a Lightroom profile for the camera’s minimal residual distortion.
Ergonomics. This is the one place where things are sketchy. It’s hard to hold onto a small ovoid object, especially one with a button on the top. I would highly recommend a wrist strap.
Upshot. Maybe not the most compelling camera at $700 plus when it came out, but now that it is a sixth of that and still a lot of fun to shoot, go for it!
Take a stress pill: dual memory cards
The Nikon Z7 is undoubtedly a quantum leap in Nikon’s camera evolution, essentially putting the best features of the Dxx series into a mirrorless body. Yet there is the inevitable complaint: “No dual card slot? Only one? No pro camera is like that!”
Pardon me, but plenty of pro cameras have been like that – and not just pro digital cameras in some benighted past (n.b., an era ending maybe 4 years ago). Consider the D2x and D700. Anyone want to call those “not pro” cameras? How about the flagships of the EOS fleet for a stretch?
In an era where film ruled the waves, it’s not like you could put two films into the same camera simultaneously for “backup.” And back then, pictures were scarcer and more valuable, and your chances of losing a shot due to a light leak, film defect, or development failure were astronomically high compared to anything that could befall a digital outfit.
So let’s move to digital. What is the measured malfunction rate of properly kept, brand-named CF, SD, or XQD cards? Hint: it’s astronomically low compared to the failure rate of the cameras that use them (SanDisk posts an MTBF of 1 million hours, or 114 years). Here are things that are far more likely to happen:
- Dying (which is all but guaranteed within the MTBF cited)
- Being killed in a car crash
- Being hit by lightning
- Finding a lost cousin on some genealogy site
- Winning Powerball
The threat of a bad flash card bringing down the system is simply not a real thing for most people. Dropping a camera, having a battery burn out, or suffering some physical mishap is far more likely. Even being in a car accident is more likely. And for that matter, why wouldn’t “any responsible pro” bring an extra car? An extra photographer?
I suspect that many of the people complaining about this issue — if not simply fronting to front — are semi-pros who scraped up every last dime to buy one really good camera to shoot wedding pictures. Fair enough. Maybe they had a bad experience with a counterfeit card once. Abused a good one. Ran one into the ground. It’s also possible to screw up the file system of a card by failing to respect buffers that are still clearing or repeatedly using without ever doing an in-camera format.
But this group is not positioned to speak for all pros (i.e., make the statement that “no pro would…”). Real pros in every field use redundancy – and it’s not limited to using two cards in the same camera (which does nothing if your camera is the single point of failure). Redundancy could include:
- Using smaller cards to reduce the “all eggs in one basket” effect. 32Gb is fine. Smaller media is one of the reasons that film was safe; 36 frames on a roll of film is small.
- Rotating between cards over the course of the shoot (the nice thing about EXIF is that Lightroom can combine shots from multiple cards into exactly the right order).
- Using two cameras and two cards, which means you will never be high and dry.
- Beaming your images in real time using wireless (a Toshiba Flashair is great for this, though there is no XQD version yet).
- Downloading one card to your laptop while shooting a second card.
When you consider the other options, thinking that two cards in a camera would get you off the hook seems a little odd, does it not?
Maybe the whole “multiple card slot” thing is a product of general societal economic insecurity. Or a “mine is bigger than yours” mindset. But any way you slice it, it doesn’t seem to make a lot of sense for most people.
Take a stress pill: shutter actuations
What is the maximum shutter actuations for the Nikon D700 [or Leica M9 or whatever]?
There is nothing such as “maximum shutter actuations.” People act as if there were some magic number. People freak out about this. The rated number is unlikely to be reached for most amateur photographers. It’s unlikely to be reached by two amateurs using a camera back to back. Maybe even three or four, unless one used the camera at the beach or somewhere gritty.
- The rating itself is the MTBF, or Mean Time Between Failures. That means that on average, Nikon’s rated shutters last 150,000 cycles. You don’t know whether that means most last to 250,000 and relatively few go 50,000 or whether all of them are somewhere around 150k.
- There is no warranty that a shutter will get to 150,000. Your two year factory warranty will expire one day, and it could be at 18,000 exposures or 180,000. Doesn’t matter. Nikon is not fixing it for you for free.
- Inside the factory warranty, Nikon does fix it for free, shutter count notwithstanding.
- Likewise, Nikon is not fixing your used camera, even its original sale was within 2 years ago, or even if the shutter failed at 8,000.
It’s all marketing.
By the way, when Nikon was coming up with its 150,000 exposure MTBF, that was 4,166 rolls of film, which was more than most people shot in their lifetime. For a pro, a new shutter (which in those days was a $250 repair) cost nothing compared to the cost $12,000 in film you shot before you got there!