Archive | Cameras – Digital RSS for this section

Leica M: that distinct feeling of ennui

Smithers: “They’re fighting like Iran and Iraq!”
Mr. Burns: “What?!”
Smithers: “Persia and Mesopotamia.”

[Written April 16, 2012] All over the world, there are provincial towns believed by their residents to be equal to New York City, Tokyo, or Paris. In a way, Leica M might be such a town. Leica (the company) is not so myopic in terms of technology, but for whatever reason, digital M arguably has become both a technological and a cultural backwater. As Carlo Levi would have put it, Cristo si è fermato a Solms.

The duality of Leica
As this author has observed it over a 15-year period, M culture is basically drawn from two groups (a) people who put up with Leica’s quirks and price due to a belief (often justified) that the resulting image quality is better and (b) a group of photographers cool to modern technology and suspicious of the idea that in spending tens of thousands of dollars on a system, someone might want features that make an M look more like a practical “only” camera. We can call the first group the Opportunists and the second group the True Believers.

Surmising what you can surmise about them, the Opportunists are fairly mobile between camera systems. In fact, given Leica’s cyclical appeal, this group largely abandoned Leica’s system in the early 1970s and abandoned it again when Leica was dragging on a digital body in the early 2000s (recall how lens prices fell back then). Despite claims that demand for M9 cameras and lenses outstrips the ability to produce them, production is small – and even so, the market price for used M9s has now drifted to 60% of new prices. Even new cameras are being discounted by designation as “demos” (no camera that was really used as a demo has five or fewer exposures on it). We know from this that there are definitely fair-weather fans and that they are starting to head for the doors again. When things change precipitously, we know the Opportunists are on the march. And some Opportunists march by keeping their M8s and simply supplementing their missing capabilities with D700s and X100s. The effect, however, is the same – that they stop buying brand L and begin experiencing the forbidden fruits of other manufacturers.

The True Believers – a smaller group but more influential with Leica’s management – hold that the world stopped producing useful new camera features in about 1986 (or, alternatively, in 2002 with the M7). For that reason, they believe, Leica M must be locked into a world of vestigial and functionally-useless removable baseplates, frameline preview levers, and ergonomics lazily whittled from a bar of Ivory soap. The True Believers deny that any feature a Leica M currently lacks is significant, desirable, or valid. Their faith is strong despite the fact that Leica itself has proven them wrong by introducing the very things True Believers claimed were nonessential to the M system: film backs that opened, lever winding, combined rangefinder/viewfinders, TTL metering, electronic shutters/autoexposure, TTL flash, and ultimately, digial imaging. For this group, the M9 – which emerged years behind technologically – is “enough.” In fact, it is already too much (one dares not speak of the D-Lux, the Digilux, the S1, the S2, or the DMR – all of which were actually cutting edge when released). [One would note that since this article was written, that this faction won and got the M10 into production, omitting some features that had been included in the intervening M typ 240/246.

When things run their commercial course, we can call them effectively obsolescent. Obviously, nothing actually stops taking pictures (or anything else) when it is superseded by newer, flashier products – or even products with better specs. But new products often do the same thing with more speed, better efficiency, or fewer avoidable annoyances. The world is littered with well-built, well-designed items that should have lasted forever in the market but were passed up by things that were simpler, cheaper, or more appealing to the masses. Fountain pens, for example, a durable, perfected designs that are largely ignored for cheaper, less messy Bic Biro ballpoints.

When it comes to cameras (or anything), this author would take it a step further and point out that that is not fair to judge an older product for lacking features that had not been invented when it came out (and this is being charitable where Leica did not, for whatever reason, implement technology that was available at the time). So talking about digital M, let’s leave aside things like live view and video. Let’s even forget about DSP speed, screen density, and frame rate. But it is fair to compare apples to apples: to take the core features (or selling points) of an old product and examine their uniqueness in the marketplace and whether they are necessary or desirable solutions to problems.

The five points of Leicas

Leica cameras have five big selling points: high sensor quality; high lens quality, a great synergism between the two, a superb optical viewfinder and a superlative mechanical rangefinder. Take them in turn:

1. Sensor image quality.

Image quality is really the reason why serious photographers buy Leicas. The Leica magic (at least at the body level) comes from two things: (1) lack of an antialiasing filter, which gives a perception of an additional 25% in resolving power (or the ability to up-res by a like amount) and (2) image processing algorithms that build a unique look. These huge determinants of quality do not depend on the overall build quality of the camera body; they reside entirely in a CCD sensor and a couple of hundreds dollars in electronic parts. As long as the same glass formula were put in front of this sensor, the end result would be identical, even if the body were ABS plastic and even if the lenses operated by autofocus.

A lot of things have happened in the 7 years since the basic digital M technology arrived. First, other manufacturers have caught up to the filter-free sensor (Kodak actually preceded Leica with many models in which the AA filter was absent or removable). Sigma has the Foveon sensor, which omits it. Fuji has the X-Trans CMOS sensor – which in addition to lacking an AA sensor, has a randomized color pattern that obviates the anti-moire processing that bogs down Leica’s cameras. Nikon put a weak filter in the D3 and D700, and the D800E effectively has none (as well as twice the pixel density and much better low-light performance than current Leica sensors). Ricoh is making GXR modules that take Leica lenses and have no AA filters. And the Leica “look,” while challenging to replicate, can indeed be achieved in relatively cheap software like Lightroom.

But backing up a little, the world has also moved away from CCD in favor of CMOS chips for lower power consumption, higher sensitivity, and live view capability. Sticking with CCDs constrains Leica’s sensor choices for any future digital M (unless Leica changes the imager completely) and puts Leicas at a long-running disadvantage in higher ISO performance. CCD chips do have great color, but so do a lot of CMOS chips. In the end analysis, slipping behind the sensor speed curve is a big issue; the number of megapixels, not so much.

2. Lens image quality.

Leica was an early participant in the Lens Speed Wars that started in the 1920s and 1930s. Back then, you needed superspeed lenses because film was rated at a blistering ISO 12. And let’s be clear here: from about the 1960s onward, Leica was pretty much unchallenged in terms of lenses, in the build, quality control and resolving departments (and in many ways still is). But a few funny things happened on the way to the 21st century.

When the world went digital and addressed low-light situations by upping sensor capabilities, Leica instead focused on simply making faster lenses. Although this technically gets to a correct exposure in a lot of situations without upping sensor performance, it also locks users into what could be called the “Noctilux Aesthetic,” shorthand for pictures where there is a razor-thin plane of focus and often heavy shading of the corners. Some people prefer to do things with higher ISO sensitivity (rather than wider apertures) so as to have more things in focus. And if it’s the aesthetic that appeals, there is always Instagram.

Leica’s drive to make faster lenses made lenses for a compact system heavy, large, and insanely expensive (a 24mm f/1.4 Summilux, for example, costs $7,000). An M9-P and a 24/1.4 will run you approximately $14,000. A D800E with a 24/1.4 Nikkor runs about $5,500 – and can either shoot in a quarter of the light with the same noise or the same light with four times the depth of field. Sometimes it is nice to have the luxury of choosing the method of taking low-light pictures. Although the expense is typically met with the refrain of, “it’s expensive because it’s good,” or “it’s not for everyone,” it is worth pointing out that many of the nouveau riche who buy things like Leicas did not get there by spending money just to spend money- cost/utility analyses go on all the time (albeit among much more expensive products). In units produced annually, Leica M9 production is about equal to the M6 – though the number of eligible buyers in the world has increased radically. Leica’s sales are up in China, but with flat overall volume, that means that they are diminishing in other parts of the world.

Leica M lenses have very limited options for addressing focus shift [with the exception of partial corrections like the 35mm f/1.4 Summilux-M FLE]. All lenses exhibit focus shift when stopped down, and this can make rangefinder focusing more inaccurate than it should be. Digital has less tolerance for error, and the only ways to mitigate focus shift in fast lenses is to use floating elements and aspherics, both of which – when executed to Leica standards – cost a mint. Closed-loop focusing (in the guise of contrast-detection AF) allows things like the $600 35/1.4 Fuji X lens (for the X-Pro1) to perform comparably to the $3,500 35 Summilux ASPH. But even before that, the lowly Hexar AF was able to keep up with the legendary 35mm Summicron ASPH by adjusting its focus to account for the selected aperture.

Leica’s 20th-century lenses hold the digital M system back. Users often fixate on speed, but older, high-speed lenses are not world beaters (though many people pay those types of prices for them). The 75mm Summilux command prices that are more driven by rarity than its relatively humdrum performance on a flat sensor (or the somewhat provincial appeal of shooting a portrait with just the eyelashes in focus). Even some of Leica’s more innovative designs like the 28-50-35 Tri-Elmar are fairly unremarkable performers on a Leica digital. The standards required to make a good digital lens are far more exacting than what made superlative film lenses in the past. There are always third-party lenses, but sometimes it seems silly to attach a $300 lens to a $7,000 body.
None of these are show-stoppers, but they tend to paint Leica M into the corner of being a very specific solution to any given problem. And getting to the place where a Leica M optically outperforms the competition requires very expensive gear.

3. The synergy.

One thing about Leica M was that for a long time, you had to use a Leica body to get the Leica M lenses. This was due in part to patents on the lens mount. Even where other manufacturers made M-mount cameras (like the Minolta CLE, Hexar RF, Bessa R, Zeiss-Ikons, and Rolleis), Leica always had a little bit of an edge due to its huge and wide pressure plate. Today, though, the entire synergistic advantage of using a Leica lens with a Leica body lies in the microlens pattern on the Leica sensor glass. It is not a perfect solution, but it is currently the only way to get the Leica resolution all across the board – and on a 24x36mm sensor. All of that said, the synergy between Leica lenses and bodies really only matters if you assume a Leica M lens to be an essential part of the equation. Where other cameras are built as a cohesive unit (lens and sensor), the 80/20 rule kicks in (80% of the performance at 20% of the price). Only here, Leica’s pricing now pushes that toward a 90/10 proposition.

4. The optical viewfinder.

One of the big points of excitement about the Leica M is its big, clear viewfinder. Though Leica fields the brightest and least-distorted finders in the industry, those finders are expensive to produce and, given the mechanical nature of the framelines, are incapable of showing accurate framing except at one arbitrary distance. This tends to make shots frame looser than they should be, thereby wasting real estate on the sensor. Japanese manufacturers have not surpassed the Leica clarity, but they have managed to produce close equivalents for much less money. But the bigger issue came with the rise of hybrid viewfinders that use LED overlay displays to (a) show instant playback; (b) project a digital level and composition gridlines; (c) display a computation of the depth of field based on focal length, aperture, and focused distance; and (d) show field-corrected framelines appropriate to any focal length. This is to say nothing of allowing an instant TTL lens view as well. These features – which can universally be shut off – add a considerable amount of utility for people who want them. They don’t take away from the beauty of the Leica version, but one line of 8-segment LEDs provides no warning about running through an SD card or a battery, two conditions that did not really exist when the viewfinder was last redesigned, 10 years ago. In the end, the major compelling feature of that Leica view is…

5. The rangefinder

Part of what makes the Leica M is the rangefinder. Leica Ms will always have rangefinders, because the “M” actually stands for Messsucher (rangefinder). When the Leica II was developed, there were no small SLRs. Leica and Zeiss based their competing 35mm cameras on coupled prism rangefinders. This was, at the time, the only technology that allowed a compact camera to focus accurately, particularly with high-speed lenses.

Even when 35mm SLRs came into the mainstream in the 1950s and 1960s, rangefinders persisted. Rangefinders were smaller in general, and it was easier to make wide-angle lenses for them. Back then – and now – rangefinders also did a better job of focusing those wide-angle lenses. Where a rangefinder system has a constant magnification and starts running into problems with longer lenses, SLRs benefit from assuming the magnification of telephoto lenses they use.

Many competitors have made runs at matching the Leica rangefinder, and the common vendor to Fuji, Mamiya, and Konica almost managed to do it. The Leica mechanism is a wonder of precision and high-end manufacturing. Today, though, it seems like a precisely engineered, laser-engraved, CNC machined, hand-honed … typewriter. The rangefinder’s competence is in focusing wideangle-to-normal lenses – but run-of-the-mill autofocus is just as good at doing that.

The weight

Aside from struggles with relevance to Opportunists at a core technology level – i.e., creeping effective obsolescence – Leica M carries a lot of baggage. The weight (all apologies to Rick Danko and Robbie Robertson) goes beyond simulating the size and weight of a camera of 1953 (the weight is, in fact, simulated – the brass covers of a digital M account for almost 25% of ite weight). It goes beyond doing things they way they have always been done – in the name of tradition. It goes beyond being accosted in public by weirdos who recognize your M8 as “an M4.” To this author, the most perfidious part of it is the cognitive dissonance that arises when one carries $10,000 in gear around his neck but fancies himself to be a photographic Zen Buddhist.

Leica used to think outside the box – not only did it popularize 35mm film photography, it also invented things like phase-detect AF, made innovative cameras like the M3, and otherwise kept up with the world (even Leica’s current S2 is technological light-years ahead of the M). Had this progressive philosophy carried over into the M series (or an updated successor), the M8/M9 would not have slavishly copied film cameras in looks, live view would have been added to stand in for the Visoflex, and it would have been Leica to introduce hybrid viewfinders. Maybe this will change on May 10, 2012 with some huge product announcement [it did not, but the M typ 240 did introduce the use of electronic viewfinders – EVFs – to Leicas].

But in our hearts, we know it won’t. The world of Leica is somewhat frustrating. The products are high quality, the resulting images are excellent, and the general solidity of the system makes all of us keep our lenses as we repetitively upgrade digital bodies (and upgraded film bodies before that). We always want to think that some vastly improved new M is around the corner, yet ultimately, we just end up settling for something that is behind the curve, for a lot of money. One could get the sense – reinforced by the rapid pace of the rest of the photographic world – that this bubble of IR filters, color vingetting, bottom-plate loading, and black paint is going to burst.When you look at things like the Fuji X-Pro1, you begin to think that perhaps it already has. Maybe the better thing would be for Leica to declare victory in 2013 after 60 years of M – after all, it outlasted Contax, Alpa, and everyone elese’s film rangefinders (and even outlasted Polaroid, Kodak, Agfa, and Ilford…) – and reboot with something as earthshaking as the M3 was in 1953.

Disclosure: the author has been a Leica user for the better part of two decades and was an early adopter of the M8 [and M240, and M246].

Toshiba FlashAir W-04 vs Eyefi Mobi Pro

sdcards

Life has many existential questions and then some simple annoyances: why is the built-in WiFi in so many cameras so terrible? My Sony a6300 requires QR codes, wireless connections, and clunky built-in applications (as well has having the even more kludgy Sony PlayMemories application on the receiving device). Sometimes the simplest solution is not proprietary, and that is where we come to wireless SD (actually SDXC) cards.

Eyefi

Eyefi was a Finnish company that pioneered the idea of the wifi-enabled SD card. The idea was to make a small card that had a short-range 802.11 connection that could interface to a computer. Before long, the focus became transmitting to handheld devices.

In theory, all wireless cards count on the tolerance of a camera for staying powered up until disk operations are finished. In practical terms, this means that the wifi component in the card is activated by reading or writing a certain amount of data to the card, and the camera does not go to sleep until the transmission is complete (or some number of minutes passes, and the camera says “enough is enough!”).

Eyefi was not a tremendously easy system to set up on a handheld because it installs a WiFi profile (ID and password). This required you to enter a code on the back of the box into the handheld application, have your phone install the profile, go to WiFi settings, connect to the Eyefi card (assuming it is powered on) and then activate the Eyefi Mobi application.

From there, and assuming you were out in the wild, and your handheld could not see any other networks to which it could auto-connect, it would automatically connect to the Eyefi card. You would have to launch the Eyefi app to get transfers to start.

In general, the Eyefi setup worked (and works), except for a few caveats:

  • It is difficult to reconfigure the cards for a new device if you lose the activation code, and it is not straightforward to recover them (you used to have to email Eyefi customer service).
  • The configuration on the pro cards (transmit raw files and video or neither) required work with the hellishly ungainly Eyefi desktop application, which was a solution looking for a problem (if you are at your computer, why would you need to wirelessly transmit data to it?)
  • Eyefi cards were (and are) pretty hard on camera batteries.
  • Eyefi cards never got fast enough for intolerant cameras like Leica Digital Ms, especially the Typ 240 and its siblings, which really don’t like cards that can’t do at least 60mb/sec write speed (which generally means a 90mb/sec read speed – what they show on the box as the “speed”).

The Eyefi Mobi and Mobi Pro cards were a bit easier. The orange Mobi only transmits JPGs (you need to plug it into an SD reader to get RAW), and the black Mobi Pro would transmit both. But the speed still maxed out at Class 10, still not fast enough for a Leica, where sometimes they work, sometimes they don’t, and when they don’t, they lock up the camera until you remove the battery.

Eyefi’s reorg, Toshiba, and Keenai

The Eyefi situation, oddly, changed for the better with the reorganization of the company. The technology end (the patents) went to Toshiba. Keenai took over the software end and designed a (free) mobile application that far more reliably connected to the card and downloaded pictures far faster. While on paper, the deal between the companies was cross-licensing, the reality is that Eyefi cards are out of print.

Toshiba

Toshiba took over with its FlashAir series where Eyefi left off. True to Japanese corporate form, it put out its own clunky (and frankly indecipherable) handheld application. FlashAir. To its credit, the application allows you to see thumbnails (JPG and pink boxes for RAW) that allow you to selectively pull (as opposed to having the card push) files. This avoids the usual wait for the good shots while the card pushes all of your bloopers to your handheld.

The FlashAir W-04 (the current model, for some reason only available in Asia – in the U.S., you get the W-03 – but you can buy the W-04 all day on Ebay…) is in many ways better than the Eyefi Mobi Pro.

First, it skips the activation codes and profiles and lets you just punch in an 8-digit password (which you can change via the handheld app) when you connect to its wireless signal. I would not recommend changing this password because the risk of someone in your immediate proximity stealing your images is far smaller than the risk of forgetting the password and bricking the card.

Second, on Keenai, it is zero-configuration. It sees the phone is connected to a FlashAir card, and then it goes to town downloading everything (JPG and RAW). I think the assumption is that your phone will only be connected to one card at a time.

Third, the Toshiba cards seem to eat batteries less, although the effective range seems shorter. I am still testing this, but that kind of tradeoff would not at all be surprising.

 

Finally, the W-04 transfers about twice as fast as the Eyefi over WiFi, and its card write speed (UHS-3, which I measure at 63.3Mb/sec write speed) is high enough even to be reliable with the finicky Leica Ms. This actually makes them useful even when you don’t need WiFi connectivity. Speeds (as tested by me through the iMac 5K’s built-in card reader)

  • Flashair W-04 (64mb/sec write, 88mb/sec read)
  • Eyefi Mobi Pro 32 (17mb/sec write, 19 mb/sec read)
  • Eyefi Mobi 32 (18mb/sec write, 19mb/sec read)
  • For reference, a Samsung Pro non wireless card (rated 80/90) runs at 64/88.

…so as you can see, “Class 10” covers a lot of territory (basically 10mb/sec and up)

Unsolved problems

There are two last annoyances.

One is that iOS devices are hostile to the idea of strict priority lists for wireless. At home or work – where your handheld would be connected to a permanent network, you would want EyeFi or FlashAir cards to trump the local Wifi when they are active (since they are only active for shooting or file transfer). This is not a problem inherent to the cards themselves, but it makes using them less fun.

Second, wireless host programs like to store downloaded images in their own purgatory rather than dumping them all directly into your iOS photos storage. This means that you end up storing two copies of some (or all) pictures, eating into onboard storage. This actually is within the province of Keenai to fix.

Conclusion

With the maturation of wirelsss SD card card technology and of editing programs like Lightroom CC mobile, you can now actually get more done in more places. And yes, they even work with Sony cameras.

 

 

No love for the Empire? Leica Multifunction Handgrip M 14495

M-EQUIPMENT-MULTIFUNCTIONAL-HANDRIP-POWERFUL-PLUS_teaser-960x640

The Multifunction Handgrip M (14495), $895, is a depressing piece of hardware. It’s not the price or the alleged GPS slowness. It’s the depressing feeling that like a lot of things, the M camera reached its highest point of elaboration and now is on the path of decontenting that hit a lot of other types of consumer electronics.

Hello and goodbye. The story of this product is wrapped up with the M typ 240 (and its cousins the M-E 262 and Monochrom 246). The 240 was a watershed moment for Leica – the first time the M had actually become functional like other people’s cameras. It signaled a few firsts:

  • Video. Not the best HD video ever, but with the new EVF(!) it was passable.
  • Audio input. Plus it actually had a way to get audio into the camera! But no EVF and mic adapter at the same time. In every life, some rain must fall.
  • A digital horizon that operated in 3 dimensions (so it could detect pitch and roll).
  • A high capacity battery.
  • A function button on the front that could trigger exposure compensation adjustments or viewfinder magnification.

How many of these features made it to the M10? The front button. Now let’s see where the Multifunction Handgrip takes you:

  • GPS. Every want to auto-tag your photos with the location?
  • SCA flash connector. Now you can connect to a flash via a metal plugged-cord or a standard PC outlet.
  • AC connector. Now you can run your camera on video for the allotted 29 minutes at a time (before the auto shut off).
  • USB port for tethered operation (likely why the AC connector is so important).

But then there came the M10, thin like a 90s shoulder pad. No more video. No more need-to-keep-it-level landscape photography (apparently…). Smaller batteries, as if the thrill of living had gone.

Weight? The 14495 adds surprisingly little weight to the M. That’s because everything but the baseplate part is plastic. Naturally, the light grip does not change the balance of the camera, so you need to use brute strength (and grip) to keep big lenses level.

Grip? The ergonomics of this are something that grow on you. At first, you feel like it could be a centimeter taller to accommodate your index finger. But wait – that’s the one you need to press the shutter. It doesn’t take long to adapt to this grip, and it greatly enhances the handling of the camera with huge lenses like the 75/1.4. Every little bit counts, and an M is pretty slippery, even with the little nub grip built into its case.

GPS? It works. Just put your camera in standby, and within a few minutes, it will get a fix. Once it’s running, it seems to be pretty accurate.  A lot of people seem to complain that when it loses a signal, it continues to log its last known location. That’s actually beneficial when you go indoors (since you don’t want it to revert to a location in the center of the earth, for example).

“Near-field” communication. You always wanted this on a digital camera, but you didn’t want Android. Well, here you go. To get a wifi signal out of a card (like the Toshiba Flashair, which will be treated in a future installment), you basically need to have your handheld touching the top plate of the camera (which apparently is the most porous surface for radio waves.

Flash. Flash. Flash. So you want to know how well the 14498 SCA setup (another bazillion dollars) works? It consists of a bracket and an extension shoe. The idea of this product is to allow you to move the flash off camera both to enhance balance and to free up the hot shoe for an optical or electronic viewfinder.

 

M-EQUIPMENT-SCA_ADAPTER_SET_teaser-960x640

The disappointing thing is that there is no vertical grip piece, meaning that your flash head is much closer to the lens axis in landscape mode than you might like. So this works better out of the box with taller flashes like the SF 58 or 64.

The weird thing is the SCA plug, which is both unusual and insanely well built. It probably requires 200 different machining operations. But like the EVF connector, it’s proprietary, meaning that you have exactly one choice for off-camera work. The exit of the cord near the body of the camera body seems weird at first, but after you use it a bit, you wonder why Nikon screwed up so badly with the SC hot-shoe adapters, which have huge cords that on an M camera either end up blocking the viewfinder or getting in your face, literally.

But the good thing with the 14498 is that you can get and use your favorite old Vivitar handgrip – because the extension shoe detaches from the bracket. And can be used without the bracket.

Flash operation is unremarkable (as it should be). You do not get a flash-ready indication in the EVF if you have it attached, and shot to shot lag time is not affected.

Conclusion. The Multifunction Grip M, if you can score one used for under $400, is a pretty good item. At that price, it’s not quite as outrageously expensive as list, and it helps tremendously with heavy lenses. As to the SCA set, it’s a tougher call, unless you can get one for under $200. Where the grip gives you a standard PC connector, you can use any handle-mount auto flash you want (such as a Metz 45 series). Flash may or may not be in your personal program, but I would remind you that the higher-end Leica flashes do high-speed synch very well.

Sony a6300 and Techart LM-EA7 II

20160904_171503

Sony a6300 with Leica 35/1.4 Summilux-M ASPH and LM-EA7 II

Sony a6300: love to hate you

There may not be any point, six months after the fact, to writing anything about the Sony a6300 compact camera. Well, maybe there is. Sony APS-C cameras are something that Fuji fans love to hate. And what’s not to hate from their perspective? Sony doesn’t make cameras that look like old rangefinders or SLRs, Sony lords it over Fuji with sensors that are slightly ahead (Fujifilm buys sensors from Sony, so it is not going to get the pathbreaking product immediately), Sony lenses are supposed to be terrible, and despite all this, Sony still outsells Fuji by an order of magnitude. How could this be?

— Sony strengths relative to Fuji in the mirrorless arena

The two possible answers are video and AF performance. Video on the a6300 is nothing short of phenomenal: 4K, 120fps HD, and just about every type of video gamma geekery that you could want. The Multi-Interface Shoe allows for some interesting snap-on microphone options, including XLR and wireless. The worst thing anyone has said about the a6300’s video is that it has rolling shutter problems, and the answer to that is really, so what? It’s an artifact of any mirrorless camera when used for video. And since Fuji sources its sensors from Sony, you’re not going to do any better. In fact, no one outside the Fujisphere considers Fuji’s video in any way significant.

The focusing speed and accuracy a NEX/Alpha has always been somewhat incredible. Even back to the old NEX-5, Sony could make lenses that silently and smoothly achieve focus on faces. The a6300 with its kit lens posts some insanely fast times, and Sony’s claims about continuous focus tracking are largely true, at least as far as this author has been able to reproduce the right photographic, ahem, “needs.” In fast action, a camera with poor lenses but a responsive system does much better than a more ponderous camera/lens combination that misses the forest for the trees.

One thing that is clear from the dpreview.com tests is that with whatever mystery lenses the site used to test the X-Pro2 and A6300,* there is almost zero difference in image quality, anywhere on the frame.

*Never disclosing the lenses used is dpreview’s second-biggest failing. The first is retconning itself into the time before the internet and digital cameras existed. Sorry. That was a mistake. The first is allowing itself to be bought by Amazon. Then the second is retconning. Then the third is mystery lenses (apologies to Steve Martin).

— Handling

The A6300 is fairly easy to handle. The grip section of the camera is substantial, and in general, it is easy to operate. No one, though, understands what the second command dial is doing on the top deck. It’s not comfortable to use with the camera at your eye. Controls are snappy and solid, as is the general build.

— Viewing

The A6300 has the latest OLED high-density electronic viewfinder that features a 2-axis level (pitch and roll) and more information display possibilities than you want to admit you want. Battery life is helpfully provided by percentage (and if there is one nice thing about Sony batteries, they are good communicators. Shooting does not black out in continuous mode. The EVF senses heat (infrared radiation); hence, its eye sensor does not react to glass-lensed glasses or sunglasses. If you don’t like the EVF, there is a big LCD on the back. Knock yourself out.

— Shooting

This is mostly unchanged since the a6000. The big thing is silent shooting, which uses a front and back electronic curtain (you can also choose electronic front or mechanical front). Silent shooting has two failure modes: first, in any situation with fast-moving objects, the progressive read of the sensor will cause typical “rolling shutter” artifacts. Second, dimmed LED lights (dimmed at the wall switch) flicker, even at full brightness, and can cause light banding in the finished frame (rolling shadow).

— Legacy lenses

One big note is that it is not particularly easy to engage viewfinder magnification on a shot-to-shot basis. You either have to learn to live with focus peaking or slow way down if you want to focus older SLR lenses, for example.

— Accessories and cutting corners

If you are accustomed to older NEX cameras, you will marvel at how Sony expects you to charge this camera with a USB connection to something else. The better solution is the Sony BC-TRW, which is a microscopic dual-voltage charger. It actually has four charging indicators (1-3 and off – meaning “fully charged.”). But yes, you still get a useless camera strap in the box.

 

An exit from the closed system

The problem with APS-C camera systems, whether Sony or Fuji makes them, is that they are closed, highly proprietary systems. You can’t stick a Fujinon on a Sony; you can’t get a Sony Zeiss lens onto an X-Pro2. Change systems? Get ready to pay the price when you sell your old system’s lenses.

There are two tired retorts:

  1. But the system has all the lenses you’ll ever need.
  2. Why don’t you just mount legacy lenses on an adapter?

The first argument is disposed of easily: what if you don’t like the one lens with your preferred angle of view and preferred maximum aperture? What if you don’t want to shell out for new lenses? What if you need the money for booze?

The second fails due to the kludge factor. Yes, it’s possible to mount other lenses on these bodies for use with cheap Chinese adapters and your old lenses. It’s also generally miserable. Both Fuji and Sony allow focus magnification, but Sony makes it difficult to use when a non-Sony lens is mounted. Both makes have focus peaking, but that’s not as definitive as you think. And although Fuji offers a phase-detect driven split-image manual focusing function, it’s not that much fun and not that fast to use.

The “out” provided by Sony was to enable phase-detect autofocus with third-party lenses. This enabled things like the TechArt LM-EA7 II adapter, which in theory allows the autofocusing of any M mount lens (or lens that can be adapted to M, provided it physically fits the adapter). If this works, it would be a game-changer, since it would bypass the usual foibles of adapted lenses (focus difficulty and inaccuracy of focus peaking being two big ones). Is this true?

The good, the bad, and the ugly with the LM-EA7 II

The adapter comes in a nice, foam-padded box and includes a NEX/E-mount body cap and rear lens cap. This is a nice touch, since people who bought the a6300 with a kit lens will have neither.

20160903_185104.jpg

50mm f/1.5 ZM C-Sonnar with LM-EA7 II

The good news is that with the sweet spot for Leica lenses: 35-50, the LM-EA7 works like a charm. The noise is a faint whirring, and the Sony phase-detect system fairly effortlessly computes and reaches the focus point (provided, of course, that your lens would ordinarily need 4.5mm or less of travel between infinity and minimum focusing distance).

Some observations:

  1. Focusing is through the lens, at shooting aperture. ***This forces the camera to automatically adjust for focus shift on fast lenses, again making the a6300 more accurate and repeatable than a Leica M body, which can only have accurate focus at one aperture.
  2. The camera plus adapter can focus on an off-center subject using (for example) wide AF. Face recognition works with this adapter, even though the adapter supports phase-detect only. ***This is significant because it means that the a6300 can more accurately focus fast Leica lenses on off-center subjects than a Leica body can.
  3. The camera plus adapter rarely misses, even off-center. In fact, the focus with things like the 50/1.5 ZM Sonnar (the modern version) is better than can be achieved with a rangefinder (naturally, due to focus shift).
  4. The adapter is serviceable with 75mm and longer lenses, provided that you pre-focus to somewhere at least near the expected focus point.
  5. The adapter, by virtue of its inbuilt extension, gives you slightly closer close focus with 35mm and shorter lenses.
  6. There is little or no color shift with adapted wides. Depends on the lens, but even the ZM Biogon 4.5 seemed to do ok.
  7. Flash works with the adapted lenses.
  8. The multi-shot vibration-reduction mode works (JPG only).
  9. The weight limit for the objective assembly (lens plus any adapters to M mount) is 750g. This is well beyond what you need for almost any Leica-mount lens and covers most DSLR prime lenses (if you go lens – to M adapter – to LM EA7 – to camera.
  10. The artistic effects, such as “Sad Clown with Single Tear Airbrushed onto Sweatshirt” still work with adapted lenses.

Now, what’s the catch? Well, there are seven.

  1. PDAF does not work for video, and the adapter does not do contrast-detect.
  2. Due to some clear limits in the Sony PDAF software (which is probably set up to look for big focusing changes), wide lenses (≤21mm) and lenses with maximum apertures of f/4 or smaller do not focus well. Granted, why do you need AF with these lenses?
  3. The motor part of the adapter hangs below the camera, making it hard to set the camera down. This is not entirely negative because it also makes a nice grip.
  4. Not all SLR mount to M mount adapters work. In general, you have to use the Leicaist versions because they taper enough to miss the motor unit. Konica AR is one of the couple that work with the adapter, and even then, it’s just the typical Chinese adapter with a relief milled into it to clear the autofocus adapter.
  5. Taking the camera’s aperture setting off f/2 or 2/8 tends to cause overexposure.
  6. The system for selecting and recording lens-specific metadata is confusing, pointless, and possibly both. Your best word may be to record everything as 15mm.
  7. It does take a toll on your battery.

Tips and tricks

  1. Disengaging AF. For some reason, there is a lot of internet kvetching about how it is difficult to disengage AF. This is probably based on old firmware that requires you to use Aperture Priority and turn to a small f/stop. It is actually very easy to disengage the AF temporarily. If you press and hold AE/AF-L on the a6300, the adapter will park at its “infinity” setting, the focus peaking will come on, and you can then focus manually. When you let go of the AE/AF-L button, the adapter goes back to normal AF operation (make sure the lens is set to infinity before you do this!).
  2. Quickly overriding face-detect or wide area AF. If you have the camera set to wide AF, and you press the center of the back wheel, it will go into spot AF, center area only. It will also automatically focus in that zone. There are many possible green boxes, so it’s not like spot AF – but it suffices in most situations where you need an arbitrary focus point.
  3. Minimum focusing distance. With a travel of 4.5mm, and the lens set to infinity, the adapter does not have extension enough to reach minimum focusing distance with any lens over 50mm. The slight exception appears to be some zooms, since their designs often obviate a direct relationship between focal length and extension while focusing. Minimum focusing distance, though, is all in your mind with the A6300, whose narrower angle of view causes you to back up to get the same field as with an FX/35mm camera.
  4. Prefocusing longer lenses. With long lenses the quickest and easiest way to get to a range where you can achieve focus is to press AE/AF-L (which parks the lens), turn focus peaking on, and focus to a point where focus is just behind the intended subject. Once you are there, let go of the AE/AF-L button to reactivate AF. Because you focused behind the subject, and because the adapter extends (thereby moving the focus point closer to the camera), you have now put your lens exactly in the right place. Needless to say, the longer the lens, the less frontward subject movement this technique will tolerate.
  5. Marking your close-focus point with long lenses. If you habitually shoot at 1-1.5m, find the right “parked” focus distance (see above) and then mark it on the focusing ring with a dot of colored paint.

Compatibility

20160919_221550

Konica 57mm f/1.2 Hexanon AR, shot by the Konica 35-70 f/3.5-4.5 Zoom Hexanon AR ($50), the “plastic fantastic” in its quasi macro mode, on the LM-EA7II.

Yes. In general the performance of this adapter depends on two major variables: lens weight and maximum aperture.  The former degrades focusing speed; the latter, certainty of locked focus. As noted above, Hexanons were tested due to the availability of an ulterior SLR adapter (plus I had a bunch sitting around).

  1. 35mm f/1.4 Summilux-ASPH M (pre FLE)
  2. 40mm f/2 M-Rokkor
  3. 50mm f/1.1 MS-Sonnetar
  4. 50mm f/1.5 ZM C-Sonnar
  5. 50mm f/1.5 Jena Sonnar (prewar)
  6. 50mm f/2.0  M-Hexanon
  7. 50mm f/2.4L Hexanon
  8. 50mm f/2.8 Jena Sonnar (with Amedeo dual-mount Contact to Leica adapter)
  9. 50mm f/2 Jena Sonnar collapsible prewar
  10. 50mm f/2 Carl Zeiss (Opton) Sonnar, postwar
  11. 75mm f/1.4 Summilux-M (prefocus)
  12. 90mm f/2.8 M-Hexanon (prefocus)
  13. 10.5cm f/2.5 PC Nikkor (LTM)
  14. 40mm f/2 Hexanon (AR) (Konica mount via Leicaist adapter)
  15. 57mm f/1.2 Hexanon AR
  16. 35-70mm f/3.5-4.5 Zoom-Hexanon AR
  17. 85mm f/1.8 Hexanon AR

Kinda. For wide-angle, medium aperture lenses the adapter does not do so well because Sony’s phase-detect AF isn’t set up to split hairs.

  1. 24mm f/2.8 Hexanon AR

No? Here, the details are too small and/or the depth of field too much to get an easy lock (or sometimes, any lock) with the A6300 [edit note: this appears to be due to the camera’s having difficulty in deciding where the focus point should be – and even in its “spot” modes, the a6300 is picking a focus point]. The behavior on these is more deliberate focusing, almost as if the camera had switched into contrast-detect].

  1. 18mm f/4 ZM Distagon [too wide, too small an aperture]
  2. 21mm f/4.5 ZM Biogon [too wide, too small an aperture]
  3. 21-35mm f/3.4-4.0 M-Hexanon Dual [too wide, too small an aperture]
  4. 50mm f/1.5 Carl Zeiss (Opton) Sonnar [aberrations that Sony AF can’t understand?]

Conclusion

The Sony A6300 is a pretty formidable camera for video and not a slouch for stills provided either that your style does not exact ultra high performance from kit lenses or provided that you are willing to invest in better Sony or Sony/Zeiss glass.

The LM-EA7II may never be good for sports or high-intensity moving work, but it provides some fun with old lenses, or as much of it as you can take! It’s actually a bit irritating that I did not have an A7-series camera on hand to try it.

Konica M-Hexanon 28mm f/2.8

20160524_192703

The 28mm M-Hexanon, like the its focal length, occupies a strange space that is neither here nor there. I have never had good luck with 28mm lenses, if only because the angle is a little wide to be comfortable for close shots of people and a little narrow for some of the landscapes I shoot.

Only on the verge of selling mine (for lack of use since way back when I had an M8) did I shoot a bunch of tests with an M typ 240. This particular lens had been recollimated to be at exactly Leica spec (most lenses made before the M8 were not set up to hit the center of a flat sensor).

This piece will not editorialize much but instead show it like it is. Which is quite good, far better than I had remembered.

First, the obligatory “how sharp at a meter” exercise. This is f/2.8.

20160524_183719

Next: does it shoot good pictures of children? Yes.

20160524_184112

E poi – how is the bokeh? Strangely, it’s actually really good, especially for a wide lens. Here is the sequence f/2.8, 4, 5.6, 8.

Sunstars? Got ’em too. Here is f/2.8-8 (clockwise):

Gross resolving power (again, f/2.8-8):

And now, we laugh at your Elmarit-M!

20160524_191339

Flare resistance, same range:

Spherical distortion:

20160524_190112

Another test; can’t remember why. Seemed like a good idea at the time.

 

General verdict:

20160524_191253

MS-Optical 50mm f/1.1 Sonnetar: magic time

The MS Optical Research Sonnetar is like The Life Aquatic with Steve Zissou. You either get it or you don’t, and if you don’t understand Jacques Cousteau, Willem Dafoe playing a subservient gay German, or Wes Anderson in general, there is no one who can make you like it. By the same token, if you drive Jaguars, no one with a 276hp front-drive Camry is ever going to win you over by telling you it has a higher thrust-to-weight ratio than an XJS V12 with the flying buttress hard top.

You don’t buy a Sonnetar as your only 50mm lens; in fact, you don’t even buy it as your only fast 50mm lens (and by the way, 50s should either be fast or fun – there is nothing more bland than a 50mm Summicron). The Sonnetar has strange controls for most (the rotating front barrel is exactly like using a Contax or Nikon rangefinder). It vignettes like crazy. At any distance, you can have your choice between correct focus and optical correction.

Why would anyone like it? It’s actually a big question whose only easy answer might be that when you have to shoot an f/1.1 lens in ultra-low light conditions, you pick your poison. You’re playing the limits.

N.B. All pictures shot in b/w are shot with a new Leica Monochrom (typ 246). All shots in color are with an M (typ 240). It’s absurd to change color pictures to monochrome to try to judge sharpness.

What is it? The MS-Sonnetar is the second modern revival of the 50mm f/1.5 Carl Zeiss Sonnar (West Germany, 1950s-1960s), the first one being the Zeiss ZM C-Sonnar 1.5/50mm. Why this type of lens is popular today is puzzling; when lens coatings enabled highly corrected 50mm lenses like the Planar, all of the expensive cemented groups of the f/1.5 Sonnar became obsolete. Today, the popularity of the Sonnar pattern might be in its imperfection: focus falloff in the form of field curvature and vignetting. The Sonnar yields marginally smaller and lighter overall packaging than a Planar or Double Guass, and it has slightly higher resistance to flare.

Every Sonnar revival/clone/ripoff over the past 50+ years has had its own set of strengths and weaknesses; it seems that almost none of them shows the balanced performance of the original Zeiss design. They either sacrifice sharpness for bokeh or go gaga for bokeh and live with a lot of focus shift.

The Sonnetar goes for the gusto with fewer elements and only one cemented group; a lighter, more compact barrel; and almost an entire stop of extra speed. It is the fastest Sonnar-style production lens in terms of T-stops, edging out the 50/1.1 Zunow by virtue of having fewer elements and more effective coatings.

Getting a handle on it. The Sonnetar is a very compact lens; the barrel is smaller than a 50mm Summicron, flaring out to a wider front section that takes 52mm filters (and no, full-sized B+Ws do not vignette). It’s hard to say whether it is modeled after a Zunow, a 50/1.1 Nikkor, or an Opton Sonnar. But all of them have a particular shape to them. The Sonnetar looks most like the Zunow, with the focusing and aperture rings reversed.

The frontmost ring is focus (supplemented with a small lever in the back if that’s what you want); the rearward ring is the aperture control, which smoothly adjusts from f/1.1 to f/16. Like a lot of older lenses, as the aperture numbers get higher, they get closer together (it is probably also a side effect of the Sonnetar’s super-nifty, perfectly circular German iris. But no matter in splitting hairs between f/11 and 16; you won’t be shooting there anyway.

The tough part of the ergonomics is something you’d never expect: the rear lens cap. It screws into the rear lens group, which unfortunately is also the thing that is the coma control. As for the front cap (which also screws in), you’ll probably leave that in the box with the hand-drawn spherical aberration measurements and the pretty hood. You’ll either use an MRC filter or a pinch cap to keep your fingers off the front glass.

Overall build quality. Done out in matte black chrome, the finish of the Sonnetar is a good match for a black Leica M-P or Monochrom typ 246. The black anodized finish is very tough, and the mounting ridges that you grasp to mount the lens will take bits of skin along with them. Numbers are clearly engraved and filled in white. They are legible and inoffensive. There is no way to 6-bit code this lens, since the rear flange is integral with the lens barrel (it is very much built like an old rangefinder lens with a rotating optical unit).

The glass (modified Sonnar design, more air-spaced) is perfectly clean and perfectly coated (from what I understand, MS Optical’s multicoating is a simple 2-layer). The reality is that the efficiency of modern coatings and the low element count makes internal flare a non-issue. Interior blacking is actually dark grey, which may seem puzzling, but if it’s good enough for telescopes, it’s probably good enough for camera lenses.

There are some build quality nits. One is that the lens (both on the sensor and in the rangefinder) hits infinity with about a mm of travel left in the focusing ring. This is probably an artifact of having that ring be the same part that provides the rangefinder cam. This might be of concern if you are trying to focus at infinity by feeling for a stop – and it is no different a problem than using an Asian LTM adapter that is a fraction of a millimeter too thin. It almost seems like you could just loosen the focusing ring screws and shift it so that infinity was on the stop

The other is that MS-Optical only uses a couple of actual lens mounts. The 51.6mm lens mount provides cam action that approximates a 51.6mm (Leica-spec) lens. Its frameline selection is determined by whether the mount is compressed around a notch in one of the bayonets or not. This lens uses about 90 degrees to go from 1m to ∞, which is quite short. This gives you a much faster acquisition time for focus but degrades the focus accuracy. Contrast this to 1950s and 1960s LTM lenses (and indeed the 75 Summilux), whose ponderously slow focusing rate can cause you to miss the moment completely. In any case, you are much better off using the ring than the lever because the larger diameter of the barrel provides better precision (because it takes more movement of the control surface per unit of focus change).

The $&@(!#% “coma adjuster.” The most famous feature of this lens is a “coma adjuster,” a ring around the rear element that has a white indicator dot and four distance dots (1m – white; 2m – white, 4m – red, and infinity-white). The lens is sold with an instruction sheet that tells you this is for adjusting “coma,” which would be the shape of point light sources (round or not). Why does anyone care about coma? It’s a big deal for telescopes, and that’s what Miyazaki designed for most of his life. What you get in terms of optical performance in the near range is a set of very subtle changes. Perhaps this operates better at a distance, but for its stated purpose, the adjuster seems a little bit gimmicky.

What is not so subtle is that the same control – determining the position of the rear lens group – has a tremendous effect on focus (because it changes the focal length of the lens) and on field curvature (whether the plane of focus is flat across the field or curved inward at the edges). This almost off-label use is actually very easy to exploit (see the discussion of what the directions actually say below).

Focal length control is very important on a super-speed lens. A Leica rangefinder assumes the same movement as a 51.6mm lens. Nominal “50mm” lenses that have a 51.6mm focal length can rely on simple movement of the lens cell when focusing to track from near to far at the correct rate. Shorter lenses (like 35mm lenses) have to translate a smaller amount of lens cell movement (front to back) to a relatively larger amount of rangefinder cam movement. Likewise, a 90mm lens needs the cell to move more than the cam moves. With most 50mm f/2 lenses, variances of a couple of 1/10s of a millimeter in actual focal length are not of great consequence because the lens has a little depth of field (or “fudge factor”). Lenses that have super-thin depth of field, such as an f/1.1 lens, require far more precision in their focal length to work well with a rangefinder. One can also surmise that the coma adjuster ring also serves as a calibration method for the lens that does not require reassembly.

According to the directions, this is how to use the coma adjuster ring:

Adjacent to the coma adjustment ring, you will find a white reference point (see the above illustration) to which an appropriate ring position has to be matched by rotating the ring. Using the coma adjustment system, a very high level tuning/focusing optimisation is made possible.

[…]

For Leica M Type Rangefinder Camera Users Initially, bring the red dot of the ring to the white reference point by rotating the coma adjustment ring. As you familiarise yourself to this lens, you may wish to change the ring position either to the left or right. For example, at the infinity best point, the actual focus point will be slightly brought forward (therefore, take a photo with focus point slightly backward). At the white dot that is best for 2m distance, a focus point will be slightly brought backward (therefore, take a photo with focus point slightly forward). This might take some practice and experience to achieve best results.

In real life, the tips for using this are:

  • Turning the adjuster toward longer distances will make the lens focus closer to the camera.
  • Turning the adjuster toward shorter distances will make the lens focus farther from the camera.
  • Putting the coma adjuster on 1m will cause a back focus of 15-20cm at 1m, which is not insignificant.
  • Putting the coma adjuster on ∞ will cause the lens not to focus (optically) to infinity.
  • Putting the adjuster about 2mm short of the 4m mark will produce best focus at f/1.1-1.6 from just under 1m to infinity. This is not surprising, since it is a distance of about 50 focal lengths (2.5m), which is a conventional distance at which lenses are tested. It is also apparently the setting used to measure MTF (as shown on the instruction sheet).
  • The lens will decouple from an M rangefinder at the minimum distance stop, so don’t do any testing below about 0.8m.

IN MOST CASES, YOU WILL ONLY BE MOVING THIS ADJUSTER 1 or 2MM FROM THE RED MARK. UNLESS YOU WANT TO GO CRAZY.

It really, really, really helps to have a LensAlign to calibrate the lens because you can see the zone of focus very correctly. Although you can trial-and-err it without this $80 plastic device, the problem is ascertaining the effect of focus shift. You want to hit a calibration where the zone of focus includes the intended point through as many apertures as you can – because like a lot of lenses in this speed class, the Sonnetar has under corrected spherical aberration that causes focus shift with aperture changes. The LensAlign lets you observe a band of high contrast as it moves (and expands) as you stop down. You don’t even need to shoot it head-on as you would with a DSLR; you need to check this from oblique angles too – because that is how you will focus your Leica in real life. Needless to say, if you are going to use this lens with a film camera, it helps to have a digital to get it dialed in.

Even within any calibration, the M viewfinder system (including the improved rangefinders for the M typ 240 and 246) has enough lash in it that the direction from which you focus – as well as small movements that don’t even produce a visible change in the RF alignment – can affect the focus point. So the word is “practice.” Wide-open, you will nudge to a slightly farther focused distance (without making the RF spot move).

Performance. All high-speed 50mm lenses (f>1.4) involve tradeoffs. The simple answer is that the Sonnetar has characteristics that vary depending on the coma adjuster setting, and these correspond pretty closely to the optimization differences in an Opton Sonnar, a 50/1.4 Nikkor LTM lens, and a 50/1.5 Canon LTM lens.

For most testing, I have kept the lens optimized at f/1.1 to 1/6 at distances up to 3m. It performs very well from 0.8 to 10m at f/1.1-1.6. If you get the calibration just right, you can keep it sharp through f/5.6, and it’s sharp across the field. At long distances, however, you get progressive blur toward the frame edges. This is gone at f/8. I suspect that the coma adjuster could overcome things, but distance shots are a little outside the use case for this lens (for distance, you are always better off with a slightly smaller aperture lens).

Sharpness seems to max out at f/1.6 (the dot between f/1.4 and f/2 on the focusing scale). Contrast is about double that at f/1.1. If something like the Canon 50mm f/1.2 LTM lens is your frame of reference, at wide-open settings, the Sonnetar is visibly better (and focuses far more accurately). If you are shooting at f/4 or smaller, something like the Canon provides much more balanced performance.

Here is a sequence that should show the differences at the wide apertures. If you click on the picture, you should be able to see it full-size. First, 0.8m, whole scene. Yes, the 44-year-old unopened bottle of Beam is real, as is the gaffe of keeping champagne at other than depressed temperatures. And no, I can’t explain the presence of the CFL bulb on the bar, since I own no fixture that takes them.

overall

Next, check out the difference between f/1.1 (left) and f/1.6 (right) at 100%. The apertures shown in the metadata are computed by the M typ 246, so they are not entirely accurate. There is quite a bit of contrast jump in one stop.

center-100

Next, here is the same comparison at 200%. The focus point here is the stamp “Spring 1963.”

center-200

Next, here is the mid-right side at 100%. Still holding together.

middle-right-100

Extreme left, 100%. Same story.

corner-100

Real-world, stressed out, trying to get enough distance to focus in almost complete darkness, you still get good results. This is f/1.6 at ISO 2500 and 1/12 of a second:

L1001163

And a bit better at 1/45 sec (by the way, the Last Word is something you ought to try sometime):

L1001126

And this is the obligatory f/8 shot outdoors with a G filter.

L1000791

Flare is very well controlled except in extreme side-lighting, where you can get some bizarre effects. This is a characteristic of Sonnar-type lenses. There is some “glow,” which is the normal Sonnar flare on hard dark/light interfaces that occurs when the focus point is ahead of the object. It is more visible in the preview mode of an M camera than it is in the final files. Resistance to extreme backlighting is pretty good, a lot better than with the old Canon 50/1.2:

L1000799

Here is the difficult-to-replicate total flare failure mode. You might want to use a lens hood when the sun is in the corner. Or maybe not.

L1000790

Vignetting is not going to be a huge issue at close distances, since the barrel is extended. At f/2 and down, it is not obnoxious, especially when combined with the automatic corner correction on the M8/9/240/246. If you want to go very heavy duty on perfect corrections, use the Adobe Flat Field plugin for Lightroom. You will need to shoot baseline calibrations at the distances and apertures you normally shoot. You can do that after the fact.

Color rendition can be a little weird. The “tantalum” glass in this lens (probably standing in for less-exciting sounding “rare earth”) shows mild versions of the color enhancing effects of a didymium enhancing filter (like a B+W 491, Tiffen Enhancing Filter, or Hoya Redhancer). Magenta and yellow seem to be favored here. Here are some pictures that should illustrate this. For your evaluation of secondary characteristics, this is at f/2:

L1000689

f/4:

L1000686

f/1.1:

L1000431

f/1.1:

20151010_150258

Chromatic aberration is a factor here but not in the traditional way. Wide-open, this lens tends to have the blur from adjoining colors bleed together. On an M typ 240, this looks a little bit like soft focus. On the M typ 246, this disappears completely, and the lens develops some killer contrast. This is characteristic of sticking a lot of old-school lenses on the new Monochrom body; a lot of older optical designs suddenly start looking awesome.

Bokeh is such a bourgeois concept. With spherical lenses, you either get universally good bokeh but bad focus shift (ZM C-Sonnar) or poor bokeh and reduced focus shift (50/1.4 Nikkor, 50/1.5 Canon). Unfortunately, with high-speed lenses, the latter combination (or in this case calibration) is much easier to live with. With the Sonnetar, you want to get as close to your subject as possible with as great a distance from it to the background as possible. Otherwise, you can enjoy what generation of Canon and Nikon Sonnar clones have experienced. By the way, here is a direct comparison between the bokeh of the 50/1.2 Canon and the Sonnetar. Maybe you can tell which is which?

L1001270 L1001341

Conclusion. If I did not currently own eleven 50mm lenses (just temporarily), I don’t know how I would feel about this one. That said, the Sonnetar is the one that seems to be welded onto my Monochrom. It’s quirky, it takes a lot of practice to use, and even after a couple of months of practice, there is still a lot to master. That said, it’s an elegant alternative to the Coke cans and second mortgages that tend to dominate the super-speed 50mm space.

The Leica Monochrom typ 246 and filters

20150712_115548

The Internet seems to offer very little actually useful information on the M typ 246’s response to color contrast filters. One would observe that this is a product of authors who have little understanding of color theory and the use of filters with traditional film materials. Let’s supplant all of these blind-leading-the-bind pages with a totally new, semi-ignorant page on the subject.

What do we know about filters? Or not?

The first thing to confront is that we don’t know as much about filters as we think we do. Part of the problem is expectations formed by reading filter pamphlets. These contain such questionably useful statements as:

Especially useful for clear contrast between blue sky with clouds and foreground. Provides a natural tonal rendition. Often used for subjects at intermediate distances. (Hoya Yellow K2)

…has a very pronounced effect and darkens violet and blue very strongly, green quite strongly, and even yellowish green a little. Landscape and architectural photos show an increased, almost “graphic” contrast, while a cloudy sky may already appear dramatic. Because the skin tones rendered by the filter color are noticeably lightened in comparison with plant greens, this filter is often used in nude photography outdoors to increase the contrast between the lighter body and the darker landscape. (B+W 040)

The only statement that is almost universally true in filter literature is that the 022/K2/#12 yellow provides a natural tone rendition. This is due to the fact that it makes blue darker than red.

But as far as contrast goes, the reality is that the effect of a filter is profoundly influenced by the color of the light hitting the scene – as well as the color of the objects in the scene. If the predominant light color is complementary to the filter color, then the scene will simply be muddy – because the filter acts as a neutral-density filter. Shoot a red filter in the mountains, and sometimes you don’t cut through the haze. Sometimes you create one.

Applying “standard” filter factors usually has a similarly disastrous effect. To make filters work, you absolutely have to start with a scene featuring colors that look different in real life. Depending on what you are doing, the actual correction may be far less than the factor implies. With TTL metering, you may have to decrease exposure to get what you want.

Depending on the vintage and construction of a lens, the use of filters can also cause focus shifts. Green filters can cause front focus with some lenses; red filters can cause back focus. These are accentuated on digital, where the imaging surface is much thinner than on conventional black-and-white films. This may be the focus (tehehe) of a future installment.

By experience, we can at least understand the following with the M typ 246: filters can have a very exaggerated effect, starting with yellow filters. The following from two months of testing and feeling this out:

  • A yellow-green filter (060, X0, Green 11) has small effects on exposure but puts more texture in people’s skin. Same as with film.
  • A green filter (061, X1, Green 13) has a noticeable effect on foliage. Same as with film.
  • The standard yellow (022, K2, Yellow 12) is still useful for correcting scenes to make color relationships work as expected. It actually makes a very good standard filter because it does not alter exposure much at all. It also has a noticeable effect on blue skies with the new Monochrom, much more so than on film.
  • The yellow-orange (023, G, Yellow 15) acts more like an orange (040, Orange 22). The picture at the top of this article was taken with a Hoya G, though you would think it was something stronger.
  • The deeper oranges (040, Orange 22) act like reds, and they are the practical limit of what you can use. Stop at 041. In daylight scenes, particularly in seaside settings with much blue light, these start to show diminishing marginal returns because they can affect most things in a scene.
  • Red is almost impossible to use.

This is somehow not surprising in light of the fact that Leica only offers filters in light green, yellow, and yellow-orange.

Testing M typ 246 with filters, by the numbers

Do these anecdotal observations have any real basis? The one way to find out is to move away from infinitely variable real-world scenes to see what the sensor does with white light. So here is a quick set of tests:

  • Sunlit and bright overcast conditions.
  • 90%+ reflectance target.
  • 90mm lens (M-Hexanon), defocused (lens at infinity; target closer than the lens’ close-focusing limit).
  • Manual exposure keyed so that white clips (the obvious limitation is that setting white to 255 might diminish slightly the differences between no filter and some filter).
  • Values are expressed as levels as measured in the center of the frame. This is to avoid having the results influenced by vignetting.
  • Blue line is bright overcast; red is direct sunlight. You won’t be using these filters in other conditions.

And the results with a whole pile of 46mm B+W filters is…

m246arith

Holy exposure cliff, Batman! Your stops are at 256, 128, 64, 32, 16, 8, 4, 2, and 1.

How do we translate this?

It is instructive to check out the B+W response charts that explain what we would expect to see (assuming, of course, a perfect sensing medium that could see all the way from UV to IR). Each filter does not make a perfect cut but rather has its own curve. Reds and yellows ramp up pretty quickly, and greens and blues are something of a free-for-all.

b+wcurves

What does Leica say about the M typ 246’s response?

Below is Leica’s own test data for the M typ 246 (I asked, and they sent it to me). The values are fairly consistent with the testing above using filters, taking into account:

  • This is chart still computed arithmetically.
  • Leica was no doubt able to run this more systematically, with a light source that could crank out much more narrow wavelengths than a filter would admit.
  • We don’t know at what stage in the imaging process these values are measured.

Regardless, Leica’s values are generally consistent with what you see mounting filters.

2015-07-27 M (Typ 246) spectral response

What real-world quirks should we expect?

There are a couple of strange things one might expect, and they were borne out by this test.

  • The 092 is labeled by B+W as 20-40x – on the M typ 246, it is more than 256x, meaning that the IR rejection of the camera is incredibly good.
  • The 081 (blue) has an unexpected spike in overall brightness. This cyan filter (used for B+W contrast reduction) also causes the camera’s metering system to overexpose (I was able to confirm this in testing).
  • The 060 (yellow-green) reads a little lower than Leica’s data on both Monochroms might suggest. This may be explained by peak camera response falling between the two filters (060 and 022) that simply wouldn’t show up on this chart.

Is it really different from the Monochrom Typ 230?

Now, in terms of the “rendering” between the M typ 246 and its predecessor, the Typ 230, we are told (anecdotally) that it is “different.” Is it? So let’s take the plot with real-world filters and convert it to log values (which for some reason fascinate the publishers of exposure data).

Note: every logarithmic chart has its own scale determined by the base; here, I used 255 (because that is how Photoshop reads out). Leica may have used a number based on raw output from the sensor. Kodak has a standardized negative density that informs its chart. The one thing that can be done with these charts is to compare shapes to see if the response goes up or down and where on the spectrum.

m246log

And then compare it to the M typ 230 chart for the original Monochrom (below), which is expressed the same way. You can see that these are not very different in shape – except that the Typ 246 seems to be a tiny bit more friendly to oranges and reds. It would actually be nice to get the raw data to plot these together, but alas…

M230log

This in turn can be compared to film. Note that neither Monochrom camera has the little blip in the red range that TX and TMY do. But that has a lot to do with the dark science of film design. One thing these charts do reveal is why you actually need to make sure that no UV light hits TMY – although the film is a little less sensitive to blue (and therefore needs less of a correction), it has quite a bit of UV sensitivity (consider a B+W 415 strong UV filter).

filmsensitivity

Upshot

All numerical silliness aside, the point here is that the responses of the Monochroms are fairly similar – and that on both, you should go easy on the strength of contrast filters – instead working to make sure you have a sufficiently varied scene to make their use meaningful.

Fuji X-T10, Time Magazine’s 35mm Camera, and Fuji’s direction

timelife

Unfrozen Cave-Man Design

The comparisons are inevitable (if you were born before, say, 1985). They are unnoticeable to Fujifilm’s obsequious band of pre-release “reviewers” (more on this later). But the similarity is undeniable. Fuji has, for its sixth camera based on the X-Trans II sensor and its eighth based on the 2011 Sony 16Mp base sensor, copied the design of a camera given away with magazine subscriptions. Hopefully unconsciously. That said, let’s not denigrate the Time-Life unit too much; it has a 50mm f/5.6 glass meniscus lens that at a small enough aperture will be competitive with multi-element lenses. It also contains so much lead in a ballast plate in the base that the scrap metal content outweighs (literally) the purchase price. Operators are standing by.

The only thing that makes the X-T10’s design really egregious coming from Fuji is that the Fuji X line is supposed to be a better-thought-out alternative to DSLRs. Yet here we are, in 2015, and the most recent two models have aped DSLR designs. Are we as a market that gullible? Do they think this will somehow make it easier for us to swallow giving up heavy SLR gear? Whatever it is, it does not say good things about the market or the manufacturer.

The silly game of making one thing look like another goes back a while. Consider the Horsey Horseless Carriage. Whether it was serious or a parody perpetrated by a rich gentleman, you get the point:

horsey

HorseyText

Fig1

Fig2

One is left to wonder whether the head was to be sourced from taxidermy or upholstery, but whatever the intent, it was not going to end well for horses.

Mimicry in camera design is not new, but it is a relatively recent phenomenon. In most cameras, form has to follow function; a camera is a box with a lens on one end and an imaging surface (film or digital) on the other. In the old days, there were no twin-lens reflexes that looked like rangefinders and no SLRs that looked like anything else. It is probably also fair to say that with a few exceptions (like the Zeiss Tenax or a couple of Raymond Loewy specials), no one actually cared whether a camera was ugly or not. After all, a Rolleiflex is only attractive in the context of twin-lens reflexes. You wouldn’t put it on a coffee table.

For some time, the proportions of digital SLRs were tied in to the film cameras that spawned them. Some of this was understandable; makers were in many cases recycling the chassis castings/moldings of existing cameras – or reusing key components like mirror/shutter boxes and viewfinder assemblies. When DSLRs started to feature their own purpose-built main castings, there was some carryover that were hard to explain – such as why grip surfaces retained proportions originally designed to house 35mm cartridges. But then again, the Space Shuttle’s engines’ dimensions are ultimately traceable to the size of the rump of a Roman soldier’s horse.

Fuji, for its part, stuck to function in designing its early X-series cameras. The X100 looked like a baby Leica M3, but any combination of an integrated optical finder is going to force a certain layout – the window either goes on the left of the right of the lens, and most people are right-eye-dominant. Yes, there was a little window-frame embellishment, but that has evaporated in the X100T. The X-Pro1 carried very subtle call-backs to the G/GL690-series cameras, but it too stuck to the function-defines-form script for the most part (it is clear given subsequent cameras that Fuji made this camera much thicker than it needed to be, given that it had a non-articulating screen). The XE, XM, and XA cameras looked like other finder-equipped or finder-less bodies – various Panasonic G, Sony NEX, and Olympus EP cameras.

The industry turning point (for the worse) came with the Olympus OMD-E5 in 2012, an unabashed visual clone of any of a number of Olympus OM-series SLRs. There was no reason to stick a pentaprism-looking housing atop a mirrorless camera. Pentax was also right there with its K-3. As if it had passed through a mirrorless camera development stage, the K-1’s top bump suddenly blossomed into a full-figured faux prism.

Fuji was always late to the party, and it took Fuji until 2014 to imitate SLR design in the X-T1, the pretext being that the big EVF required a pentaprism “hump.” Fuji dropped that pretext with the 2015 release of the blocky X-T10, stating now that it did this to recall Fuji’s (forgettable) AX line of SLRs. But the X-T10 does not look like an AX at all; it looks like a rinky-dink plastic camera. And its design appears driven neither by function nor aesthetics. It’s an ugly little box.

Why should anyone care?

On one hand, one would be tempted to ask, who cares? Fuji owners (and potential Fuji owners) should. Like a photographic version of roles written for Jason Statham, Fuji has for three years pumped out camera after camera based on the same sensor and incremental inclusions of off-the-shelf technology. Fuji’s three big additions since the X-Pro1 – namely, high-quality EVF technology, on-chip phase-detect focus, and face-detection – were set up for consumer products before the X-Pro1 came out (check out the timing of the NEX-5R and its patents). By the time the X-E2 came out, all the pieces were in place for a serious update to the X-Pro, the “flagship” camera. Between then and now, Fuji has instead pumped millions into design, tooling, and software for multiple minimally differentiated cameras – far more than it would have taken to put an X-Trans II chip, EXR II processor, and better EVF into an X-Pro2. This points to one of two possibilities: (1) the X-Pro1 was such a dog for sales that management required the engineering team to start doing what other mirrorless makers were doing or (2) Fuji has turned to avidly churning the market to keep up market share in the declining interchangeable-lens market, and an updated X-Pro1 was not anticipated to do the job.

1. Looking like what sells. On the first point, it is of some note that the X-E2 resembled the Olympus and Panasonic Micro 4:3 cameras, as well as the Sony NEX-6 and -7 APS-C Cameras. The X-T1 and -T10 have followed other manufacturers’ quasi-SLR digital designs. The lens selection in compacts of both formats (APS-C and M43) also reflects a more into competing with entry-level DSLRs: zooms, big zooms, and big primes.

This direction (physical bloating) undermines what APS-C (and Micro 4:3) were supposed to be about: smaller, lighter cameras. This has never really happened: Fuji’s and others’ lenses are not as much smaller than FX lenses as one might have been led to believe. Part of this may be that it’s cheaper to design big telecentric lenses than smaller, more symmetrical ones that require offset micro lenses. And autofocus probably exerts its own size expansion.

But for people who liked the idea of the X-Pro1, this translates into a camera that is somehow bulkier than a 24x36mm Leica M. That does not seem to be the right direction in an era where camera phones (that everyone is already carrying) are eating into compact camera sales. If aside from a camera phone, we are going to haul around another box with its own lithium-ion battery, one that is not plugged directly into social networking, do we want it to be bulky?

2. Churning and burning. The second possibility is more sinister-sounding – but it is supportable. Fuji’s product releases have occurred twice yearly since the X-Pro1. That is very often considering that the underlying technology has moved very little since fall 2013. Fuji’s marketing strategy for the XF has been simple: use shills to build up excitement, release products at high prices, slash prices when sales start to flag a couple months in, and then build excitement for the next big thing.

Fuji is not alone here, but it seems more visible in its use of “reviewers” to promote the process. The practice began with with some Fuji employees — but at least they disclosed who they worked for. But then it moved on to “reviews” started coming rom (a) semi-pros; (b) Fuji-sponsored photographers; and (c) a few easy marks who believe that whatever just came out – from whatever manufacturer – is the greatest thing ever (we all know who they are). Throw into the mix some hyperventilating Fuji-oriented sites that get revenue when people click through to retailers, and you get the perfect storm of non-objective reporting. After all, whether it trips FTC guidelines or not, who would bite the hand that feeds him? And in a world where people pay good money for SEO work, catapulting your photo business to the top of any search has value.

Then comes the product. It’s great. It takes great pictures. I know this first-hand.

And a few months later comes the burn. Left with a run that it can’t sell, and even absent any fundamental spec change or replacement model, Fuji will usually slash prices 20-30% within six months. This gives an impression that every Fuji model is overpriced to begin with – and in slashing new prices, Fuji puts its own new sales directly in competition with the secondary market. This in turn hurts middle-class amateurs trying to unload old Fuji equipment to upgrade within the line. This is a great strategy for fixing a one-time inventory problem, and certainly no budget shopper in the used market will object. But especially where forced depreciation occurs without some compelling improvement (or even the oddly missing “camera body” roadmap), existing users start to feel burned, and smart shoppers learn to hang back. Why would you ever buy new? Look at completed sale prices on Ebay. Buying an XF body or lens new costs you 30-40% the day you open it. Put another way, Fuji’s pricing practices violate a fundamental rule of luxury goods sales (and let’s face it, a $1,300 camera body is a luxury good for most people): never slash MSRPs. You can have occasional rebates, bundles, or “demo” units. But once you start slashing prices, you begin degrading your brand equity. Or has that happened already?

3. Rewarding risk? Fuji should never lose track of the risks that one takes on a proprietary camera system. XF lenses do not fit anything else. There is no repurposing the same lenses on old film bodies (such as with Canon, Nikon, Pentax, and Leica) – or even repurposing them on different types of digital bodies (you can stick the same Nikkor on an APS-C D7500, FX D4, and 36Mp D810, for example). In a closed digital system. people invest in a collection of lenses in part on the premise that the line is going to continue – and that the line will remain viable compared to other systems. In a sense, everyone knows that they will be replacing camera bodies in 3-4 years. But when real upgrades never come, it causes justifiable questioning. And it’s not just sensor resolution. It goes to functionality:

  • Will battery life ever improve?
  • Will there ever be a good TTL flash?
  • Is there something about X-Trans decoding that makes it too processor-intensive for a 24Mp sensor?
  • Is the “organic sensor” thing a dodge for never upgrading the X-Pro?
  • Will the video function get less “aliasy?”

These are questions that Fuji should be in a position to answer.

Now what?

Fuji presents a strange case. Its X100 line is fantastic (and its marketing low-key). Even in the XF line, there is little to complain about in image quality. But the reaction to Fuji’s marketing strategy? Maybe the best strategy is to wait out new Fuji XF product releases and just buy used. History, after all, tells us that most of the the prices are inflated anyway.

All SLR lenses are Coke® bottles, right?

L1009734

Click to enlarge. The eyes are the focus point. What lens took this?

The advent of digital photography has made a couple of things clear: (1) many pros did not have so much talent as ability to overcome barriers to entry and (2) much of what you were told about lens quality – in terms of SLR versus rangefinder – was (or is now) untrue. This second point bears some examination.

What is the state of play on SLR vs rangefinder lens quality? The perception of SLR versus rangefinder lenses was developed when both shot on film, and there has been a major reversal of fortunes. Film was not sensitive to the angle of incidence of light coming from the back of the lens, and because rangefinders did not have mirrors, lens designers could make symmetrical lenses whose rear elements might sit just a few millimeters from the film surface. This knocked out distortion, incurred a little bit of vignetting (which was largely absorbed by the latitude of negative film, and resulted in a compact package.

SLR lenses, on the other hand, had to design around mirrors. So lenses under 50mm generally had to start with a longer focal length and then compensate it down by introducing a negative element in the front. This retrofocus arrangement generally compromised distortion and sharpness slightly, but it produced a good enough result that SLRs were able to exterminate rangefinders as mainstream cameras. But today, when the imaging surface is a flat sensor with a Bayer pattern, chromatic aberration, angle of incidence, color shift, and vignetting became big issues for traditional rangefinder lens designs. Even Leica’s very expensive wide-angle rangefinder lenses, on Leica’s very expensive bodies, were now capable of returning disappointing results in terms of color shifts and vignetting.

The goal today is sometimes called telecentricity, which is commonly understood to be the situation where light rays hit the sensor parallel to the lens axis. It is still achieved by retrofocus designs. It is telling that many Leica and mirrorless wide angles that avoid color shift and vignetting are creeping up in size to SLR lenses. Witness Leica’s fast wide-angle lenses, which are quite large – especially when you compare aperture to aperture. A 21/3.4 Super Elmar has a 46mm front thread; the 21/2.8 Elmarit-M has 60mm, which is only a hair smaller than a 20mm f/2.8D Nikkor (at 62mm). But nowhere is this phenomenon more stark than in Fuji XF lenses, where the register is shorter, lenses cover an APS-C image circle (much smaller than a 35mm camera’s) nor have to clear a mirror, and the lenses yet are 80-90% as large as SLR versions of the same.

Why do SLR lenses meet our expectation bias? In one sense, it is fair to complain about the quality of SLR lenses because the end result is not what we want – and measured as a system, they indeed underperform. But in an era where SLR lenses are being adapted for use in other things, it is fair to deconstruct what part of this is fairly attributed to parts of the system we are no longer using, such as the traditional SLR itself. And let’s be clear about this: until the advent of mirrorless cameras, the SLR (or DSLR) was the only way to achieve perfect, parallax-free framing and to reliably focus long telephotos and macro lenses.

— Focusing wide-open, shooting stopped-down. All SLR lenses are focused wide-open, which makes focusing accuracy vulnerable to focus shift. This phenomenon, which comes with spherical aberration and “good bokeh,” means that a lens might be perfectly focused at a wide aperture but back-focused when the aperture stops down for shooting. This same thing afflicts both rangefinders and SLRs, only in rangefinders, it is written off as “focus shift” and in SLRs, it is called “being a poor performer.” Aspherics and floating elements help mitigate this – and both are in play on modern lenses of all types.

— Suboptimal focusing screens. You can’t win with a single screen on an SLR. The original SLR focusing screen, a plain ground glass, excelled at focusing telephoto lenses because as the focal length increased, so did the magnification of the subject that the photographer sought to focus. But this screen was dim in the corners and sometimes dim, period. It also failed with wide-angle lenses, where the details critical to focus were actually reduced. Over time, SLRs developed focusing aids like split-image center reticles (actually tiny rangefinders). They also introduced fresnel surfaces to brighten the corners. These made it simpler to focus lenses 50mm and down, but they degraded the ability to accurately focuses lenses 85mm and longer.

— Small viewfinder magnification. A key constraint of camera viewfinder systems is that eye point and magnification are in direct opposition. In practical terms, this means that to be able to see the whole picture through a reasonably-sized viewfinder, especially while wearing eyeglasses, the picture must be reduced. This degrades the focusing abilities of every SLR focusing screen.

— Taste-making. The problem with publications like Popular Photography (and now sites like DxOMark) is that they focus the user’s attention on tests that bear little or no necessary connection to real life.The old-school photo magazines paid little attention to rangefinder lenses, so the tests of SLR lenses were generally focused on the relative merits at huge enlargement factors, and not surprisingly, among SLR lenses, the results favored more expensive glass (the larger advertising budgets of the major companies is always suspicious as well). This did not affect the sales of SLR lenses in general (because at the time no one really liked rangefinders), but it did lead to a perception that anything other than a name-brand Canon, Nikon, Pentax, Minolta, or Konica was garbage. This was an inaccurate and unfortunate perception for three reasons: (1)  Cosina, Tokina, and Sigma were making some of the major brands’ lenses under contract; (2) some of the aftermarket lenses performed adequately for the purpose; and (3) the blanket perceptions about these products, particularly third-party lenses, has landed literally millions of completely usable (if not in some cases very good) lenses in landfills.

— Leica people. Yes, we said it. For all of the doctors, economists, attorneys, CPAs, and engineers who own these and similar rangefinder cameras, there is a widespread misperception that MTF figures for SLR lenses – like home run statistics for Japanese baseball – need some kind of implicit adjustment downward to be comparable to MTF for rangefinder lenses. Not so. MTF is MTF, and it is measured in standardized procedures that do neither the camera body nor care about the lens design itself. It is of some note, conversely, that Leica’s presentation of 5lp/mm (a largely obsolete measure relevant primarily to optical prints) leads to an impression that Leica’s MTF numbers are “higher and flatter” than comparable brands.

Turning the world on its head. Two things changed the picture (so to speak), and quite radically.

— First becoming last. As noted above, he advent of 24x36mm (“full-frame”) digital cameras has exposed just how poorly some traditional rangefinder lenses perform when they project images onto flat sensors. That negative effects are minimized on smaller digital RF and mirrorless platforms (because those corners are effectively cut out of the picture) is immaterial; the only compelling thing about using rangefinder lenses on another camera is killer wides. And frankly, native APS-C lenses – because they are designed correctly for digital sensors – crush adapted rangefinder wides.

— The closed circuit. One of the things that makes mirrorless cameras really, really good is that their autofocus systems can gauge focus from the sensor itself. But this benefit – which bypasses all of the focusing infirmities of SLRs. But the same advantages obtain when attaching manual focus lenses. Not only can the user see the image exactly as resolved by the sensor; he or she can see it at greater magnification or with focus peaking. Getting virtually any lens on to any body never seems to cost more than $30, and there is now plenty of opportunity for exploration on an epic scale.

How do SLR lenses do on digital bodies?  The answer is, “it depends on the lens.” The first place to start is the adapter. It needs to be plane-parallel and to have the correct register. Many adapters are off-kilter and are cut short to “assure” infinity focus. They will need to be shimmed sometimes to achieve correct infinity focus (if you want to scale-focus wide-angle lenses). Once you get past that, this is what you can expect. Over the next few posts, we will explore some favorites, but we will spill the beans on a few “sleeper” lenses here. Caution: be careful with M42 (Pentax Screw Mount) lenses with automatic apertures – you may need to disconnect the stop-down pin to get to shooting aperture.

— Wide angles (<35mm). Because these lenses have a palpable focus point wide-open, an EVF, either at magnification or with focus peaking, is the best way to focus these. Consider also that if you are shooting traditional rangefinder wides and actually focusing them, you have to look first in the camera’s viewfinder/rangefinder window, then switch to an external finder. An EVF kills both birds with one stone (or look). Wide-angle lenses will generally perform best close-up, where errors in infinity register will have the least effect (and you should never be aiming for infinity with shorter than a 35mm lens anyway – since subject details are getting too small to give any impression of sharpness). If your thing is close-up, wide-open shots, the Vivitar 20mm f/3.8 Auto is one of the best and cheapest things going. The header picture for this article is shot with it, wide-open on an M typ 240 (which is way more resolution than any historic 35mm-format lens was ever made to handle). Reasonably low distortion (-5 on Lightroom, if you have any straight lines in the shot), high sharpness (click to get it full-size, then blow it up to check out the eyes, which are the focus point), nice bokeh, and reasonable vignetting. Vivitar lenses should not be ignored; this was a company that often employed its own lens designers in the U.S. and produced many manual focus lenses that were quite good (disregard the autofocus products and recent-vintage manual focus lenses, which can be pretty bad). Did we mention that it often costs less than $60? The Tokina RMS 17mm f/3.5 manual focus lens is also pretty good, though it often shows up a bit overpriced. Adapted wide-angles are not as compelling on APS-C cameras – because they become slowish, semi-wide lenses with huge form factors.

— Normal lenses (50mm-60mm). This is the place where there is not much point to adapting lenses – except on APS-C cameras, where these behave like fast-ish short telephotos. The lens that came with your camera is going to outperform an adapted lens – and focus both faster and more accurately. Plus you already own it. One exception is in super-speed (f≥1.2) normal lenses, which become the equivalent of a 75/1.2 on an APS-C camera or remain an awesome 50/1.2 on your Leica M or Sony A7. If Leica users need EVF to accurately focus the $10K 50/1 Noctilux, you shouldn’t feel bad about using one to focus your 1970s Nikkor. The nice thing about 50/1.2 lenses and 57/1.2 lenses is that they were every SLR manufacturer’s showpiece lens; the optics are almost always great. The other use case for adapted normals is for lenses with “character,” such as Tessars and Sonnars. The Soviet Industar 50-2 (50mm f/3.5) and -61 (f/2.0) (both 50mm Tessar, M42 SLR mount) fit this bill.

— Telephoto lenses (≥75mm). Assuming that you can get a high enough shutter speed to use these (you generally want the reciprocal of 2x the focal length or faster), this is where things get fun. SLR telephotos are often a stop or two faster than rangefinder telephotos, and they often have slightly lower contrast wide-open (which was never historically a problem, since for most of history people used these lenses to shoot high-contrast, low-light pictures). Focusing is less challenging due to the higher magnification, and with many of these, focus peaking suffices (magnification would be absurd). From a quality perspective, even cheap telephotos work really well. Here, we would jokingly tell you to “go big or go home.” A worthwhile lens to try is the Konica Hexanon AR 135mm f/3.2. This is the best of Konica’s SLR 135s, it is the cheapest ($50 on Ebay), and it focuses down to a meter. Make sure it’s the 3.2 and not the 3.5 or 2.5. The Soviet Helios-40-2 (85/1.5) is a cult favorite, but there is no argument that it is cheap at $300-400 these days. It was fun for a C-note, but those days are over. The Soviet  Jupiter-9 (85/2) (Sonnar, M42 SLR mount) is also a solid portrait choice.

— Zoom lenses. There are only three true “zoom” lenses for digital rangefinders: the 16-18-21mm Tri-Elmar, the 21-35mm M-Hexanon Dual, and the 28-35-50 Tri-Elmar. The first two are expensive ($>2000), and the third is kind of ho-hum. And none of them is a true zoom; they are all lenses that have two or three discrete focal lengths. This is an area where the things that are most fun are not intuitive. Wide-angle zooms can be unwieldy when adapted to digital cameras; telephoto zooms can be somewhat challenging to control (but have some merits). The midrange zoom is where your sleepers lie, and if you are a heavy EVF user, a good, compact 35-105mm is not a bad thing to have around. One to check out is the AF 35-105 f/3.5-4.5D Nikkor ($100-150 used). This is a tiny, aspherical, internal-focusing push-pull zoom. It is quite sharp and contrasty, and if you ever get back to your Nikon DSLRs, it is quite a nice lens. It was not a cheap lens when it came out, but selling at around $100 today, it’s one to consider.

— Novelties. Many fun (and very occasional functional) accessories were made for SLRs – cheap fisheye lenses, 90 degree attachments, telescope adapters, and the like. For occasional use, these can be economical and entertaining. Fisheyes in particular are something that are, for most people, not worth investing in. Many of these lenses want 24×36 sensors to reach their full, ahem, potential.

Conclusion. It’s probably not good to counter one generalization (that old SLR lenses are no good) with another (that they are all good). For people who occasionally need a focal length, frequently use EVFs to focus heavy fast lens or telephoto users, or are already zone-focusing wide lenses, older SLR lenses are an avenue that might be helpful. Not every SLR lens is a great performer at a small pixel pitch, but there is value in seeing what can be done more simply and cheaply than forking over another several hundred (or several thousand) to buy a native RF or mirrorless lens that comes out of the bag once or twice a year.

X100T: Some other things while we’re here

20150418_082449

Since the original piece inadvertently left out a few items, here they are.

Effects of face recognition. The prolonged use of face recognition brings a few things to light:

  • The X100T’s lens (essentially an unchanged X100 23mm f/2 lens) is much better close-up and wide-open than you might have been led to believe by using the focus-and-recompose method (which you will use if face detection fails).
  • Face recognition (or more accurately, its confusion with two faces in-frame) encourages compositions either with one visible face or two in much different planes of focus.
  • The problem, at least initially, is a conditioned inhibition from framing a face at the extreme left or right side of the frame.
  • A profound sense of disappointment ensues when one considers that the face recognition of the original NEX-5 works faster and keeps working during video recording.

Electronic shutter. This feature takes advantage of the electronic front curtain function of the X-Trans II sensor. The upside is that you can now expose at ISO 3200 and f/2 during a nuclear explosion. The downside is that you cannot use flash to do it. In terms of actually needing a shutter that can fire for 1/32,000 of a second, there are virtually no such applications in real life. The real purpose of the electronic shutter is to cut shutter lag. Ordinarily, the X100-type shutter would have to close and then open to fire; with electronic shutter selected, it fires and then closes. There is a tiny bit of lag before the next shot, but this makes the camera much better at capturing the right moment (“decisive” for those who would pretend to be Catier-Bresson).

“Rolling shutter.” Granted, this can be a problem if you shoot F1 racing from the sideline on the straightaway, but there is no real rolling shutter issue with the X100T. This “problem” has been trotted out in quite a few online reviews, but it is very difficult to show in real life. In fact, the X100T shutter captures much faster than a normal SLR shutter (which typically scans a slit in 1/320 sec max) – so if your application were going to present an issue with the X100T, you would already have seen it on a DSLR.

Fuji WiFi vs. EyeFi. The Fuji internal system has a few advantages over EyeFi,

  • It can automatically resize on the fly for transmission.
  • It can select shots for transmission without having to trip the “protect” flag.
  • It does not burn power to project a WiFi signal unless you specifically tell it to.
  • It does not take so much work to get it to wake up to transmit.
  • It does not dictate the maximum storage size of the camera.
  • It does not physically fall apart or slow down/ jam up under heavy use.

On the other hand, EyeFi still has a few advantages up its sleeve:

  • It can be moved between cameras.
  • In connection with moving it, any camera you use it in will show up with the same SSID.
  • It is better when you are shooting in a quasi-tethered manner (i.e., you want all photos to flow to a handheld) because it lets you use the camera like a camera. The Fuji requires its somewhat clumsy remote mode.

The nice thing is that you can use either system.

Exposure counter. What.the.hell? It’s bad enough that Fuji invented this on the GW and GSW cameras; it’s worse that people flip out over it when buying any used digital camera; and it’s worse yet that Fuji somehow decided to put a shot counter on the setup menu. And while we are reaching for superlatives, does someone have an explanation for why this is even a thing when according to the documentation, the counter is incremented by various operations that don’t even take pictures?

# # # # #