Archive | Cameras – SLR RSS for this section

Get a grip: the 107-year debacle of small-camera ergonomics

er·​go·​nom·​ics |  \ ˌər-gə-ˈnä-miksan applied science concerned with designing and arranging things people use so that the people and things interact most efficiently and safely (Merriam-Webster, 2021).

In the industrial setting, ergonomics is a matter of avoiding unnecessary fatigue, injuries, and discomfort. It is intended to promote both safety and efficiency. Ergonomics was first invented in 1949, after Barnack before the Leica M camera. There does not seem to be any suggestion that any camera made before about 1970 cared much about this science. Certainly, the Leica M camera – and most other small cameras – ignored this important principle of design.

Did you know that having an opposable thumb is not necessary to grip a camera the way Leica intended? It should not be a surprise that primates and even lower animals like raccoons have the right types of hands to grab cameras. Because small cameras are not actually designed for human hands. Let’s discuss small (6×9 and smaller) camera ergonomics in six rubrics.

1. How do you hold this?

Even before ergonomics had a name, small camera design went off the rails when small cameras were invented in 1914. Oskar Barnack – who being born in 1879 undoubtedly had shorter fingers than 21st-century camera users – designed the Ur-Leica with slippery round ends encased in a textured surface. This leicapithicus wetlzarensis was designed around a focal-plane shutter that did not cap and an arrangement that required a separate viewfinder. It was light, compact (65mm top to bottom), and for its weight and intended function, workable. Because you had to put the lens cap on between shots, it was not a speed demon; you were going to take the camera down from your eye to reset for the next shot costing a king’s ransom on rare double-frames of 35mm movie film. You could almost call it the mini 4×5 of its day.

There is a trope about the solid rocket boosters for the Space Shuttle ultimately tracking back to the width of a Roman horse’s haunches. Whether or not that is true is a much more difficult question than tracing our conception of how a “small” camera should appear. The Platonic form of a camera is, after all, a Leica M3, which for dimensional purposes is a taller and heavier Ur-Leica, matching dimensions to the single millimeters. The Leica inspired many also-rans from Europe and Japan, some of which turned out to be better, but all of them have the same formula: small squarish body, lever wind, viewfinder on the left. Most fixed-lens rangefinders were actually smaller than the Leica; once you substitute a leaf shutter in the lens for a focal-plane type, the body can be even tinier.

What’s wrong with this design? If the correct method of holding it it requires a paragraph-long written description, it is not a tool that is ergonomic. Leica’s own user manuals illustrate the poor hand-fit in pictures, but the written camera-holding instructions call into question whether it is the human who is being forced to conform to a tool.

Look at a Leica III or Leica M manual. Actually, look at a bunch of them. Needless to say, the right way to hold a Leica has evolved since the days of Barnack. The first suggested M grip, which tracked how the III was supposed to be grasped, completely disengaged your left hand from the focusing ring, meaning you would never be able to refocus and re-shoot quickly. The III series has you cupping the bottom corners of the camera in the fleshy parts of your palms. At least one version of the M3 manual says nothing about how to hold the camera; the more detailed one has the corner-to-palms technique again. If you look at other brands’ camera manuals from the 1940s to the 1980s, you will see a dizzying array of hand-cramping contortions.

The right hand position has stayed mostly the same. What you are supposed to do with your left has changed over time. Here is the end point of Leica’s evolution of descriptions with the M7 and M8/M9 (the M8 is shown; the M9 has the same description with the little Ikea Man holding the camera):

Leica M7

“As a practical accessory, we recommend the Mx hand grip which allows you to hold the Leica M[x] extremely steadily and to carry it with one hand/while keeping your hands free.” This begs the question – why can’t you hold an M extremely steadily without another $400 doodad? And how was it a hands-free device for the M[x]?

The record – at least as expressed in successive generations of Leica manuals – reflects a variety of “right” ways to hold a camera, then “suggested” ways (M6), then “correct” (M7/M8/M9) and with the M240 and onward, no guidance. The M240, in fact, moves the discussion of the optional M hand grip to the “accessories” section at the end. I guess given the number of Leica owners with postgraduate degrees, it’s part of the 400-level course you were supposed to take before you started at this school.

What you are even supposed to do with your right thumb seems to be a matter of interpretation, some manuals showing it, some not. The M6 manual references resting your thumb on the lever “in the standoff” position. The M240 and M10 have a nub on which to rest your thumb. The M10-D has an ersatz M2/M3 focusing lever/thumbrest whose position does not quite match an original lever kicked out. The new $300 Leica thumb-rest looks puts your thumb in the same position as the M10-D. As noted at the beginning of this article, the user of one of these cameras does not need an opposable thumb. This camera might require a totally different type of hand.

Hint: if you have long fingers, a good one-handed grip on an M240 is to put your index finger on the trigger, your middle finger on the function button, and your ring finger on the front of the camera. The camera can sit on your curled little finger (imagine a C parallel to the bottom of the camera). Your thumb rests vertically against the grip nub/control wheel. See? You can control everything, and your ring finger is still available to accidentally press the lens release.

They say if you injure your leg and then limp enough, you don’t notice it any more. This is probably the only reason that Leicas (or similarly-configured rangefinders) are thought to be “ergonomic” – it’s just the way it’s been for 100 years. Were “ever ready” cases really useful for protection – or were they makeshift “fat grips” around ill-shaped cameras?

As much as things like the Argus “Brick” are lambasted for their funny shapes and palm-poking corners, something that fills the hand is not all bad. Ask anyone who shoots Olympic pistol. But you can also ask Nikon and Canon, who figured out in the late 1980s that a fat right grip is advantageous, even if your winding motor is so small it fits inside the takeup spool. In fact, Leica uses that “fat grip” design on most of its non-M digital cameras.

3. The pocketability conceit*

“But wait, the Leica [or insert camera name here] is pocketable.”

Baloney. This might be true of a tiny minority of camera/lens combinations, or 1980s-style pleated trousers, but Leicas generally have not been “pocketable” since the advent of the long aspherical lenses if not since the M3. And grip-ability does not necessarily change the dimensions that would make something “pocketable.” Is a Hexar AF less pocketable with its front grip ridge than a Leica M3 with its flat front? Hardly. Even among other manufacturers of M-mount cameras, the ergonomics have been better, whether it is a palm swell on the back door, a grip ridge on the front of the right grip, or even something like a rubber covering. I suspect it is more Leica’s user base than the company that drives the need to keep things the same. Witness the fate of the CL and the M5.

Interestingly, what encouraged (and maybe forced) small cameras to become more ergonomic was the incorporation of batteries and motors into the right side of the camera, something that came in with cameras like the Konica FS-1, Canon T-50, and Nikon F4. Even in non-motorized SLR cameras, grip nubs began appearing on the right front of the camera (as on the Nikon FA). When you think about putting coreless motors and electronics largely on one side of the camera, and motor-driven shutters in the middle, the mechanisms in the bottom become considerably less complicated (open a manual-wind, mechanical SLR’s bottom plate to see the assemblage of shutter-cocking levers, pinions, and gears). And by a weird twist of fate, the lithium cells best-suited to powering cameras (like the 2CR5) had a chonk factor that made them better candidates for placement in a fat grip.

This brings us to a cruel irony: point-and-shoot cameras in the late 1970s and 1980s frequently had better ergonomics than what we would call “prosumer” cameras today. In fact, many of them have better ergonomics than the Leica, long-vaunted as the enthusiast’s camera. And I write that as a Leica user.

On the other end of the “small” camera spectrum are the ultracompact 35mm cameras (Rollei 35, Contax T*, Nikon 35ti, etc.). In a sense, you can cut them some slack because their major purpose is to be pocketable most of the time – at the expense of handling and durability. These were designed to fit in a sport coat at the racquets club or the horse track, to be shot for fifty or so exposures, forgotten by the owner, sold at his estate sale, rediscovered by some internet influencer, and then driven to stratospheric resale prices that hold up until someone discovers one of the following things: (1) despite often brilliant optics, they are miserable to use; (2) they are not as durable as once thought. Weight versus size is also a factor in ergonomics – and many of these cameras are lightweight and despite their shortcomings, not impossible to use.

*Ok, I only wrote this heading because the Pocketability Conceit either sounds like an old-series Star Trek episode name or a Robert Ludlum novel title.

4. O Camcorder, where art thou?

My maternal grandfather, being a doctor, retired at age 55 – assuming that like most men of his generation, he would be dead at 60. This did not come to pass (he was “retired” for 25 more years…), and after a couple of years of golf got bored and moved into TV production at his local station. Being an early adopter of almost every technology that existed, he would get the latest and greatest video equipment every year. This meant at every Christmas, he would open the trunk of his Lincoln Continental and among other gifts, pull out last year’s latest and greatest video equipment and leave it to the good offices of my parents.

One thing that was always striking about video cameras (and later camcorders) – especially by contrast to still cameras – was the amount of effort put into making them comfortable to use. This was important because the early cameras were really heavy. Pistol grips and shoulder rests for the “camera” were de rigueur when the “recorder” part was a huge heavy hard square silver purse, and even when recording decks merged with cameras in the mid-1980s, the emphasis was on one-hand control operation and anything that made it easier to hold a unit steady for a prolonged period. Zoom controls have always been able to be operated by the same hand that “presses the button.”

The “camcorder” design ethos bled over into consumer “bridge” cameras – the ones designed to bridge the gap between point-and-shoot and full-blown SLR. The Canon Photura, Ricoh Mirai, and Yashica Samurai – variously 35mm SLR and viewfinder AF cameras – acquired camcorder-like morphology, particularly pistol grips that were either parallel to the lens or adjustable. They did not experience some Chicxulub-level event; rather, they just didn’t catch on. In retrospect, it is not terribly surprising; they were expensive, didn’t look like “cameras,” and tended to be bulkier than their blocky cousins.

In an ironic twist, the replacement for camcorders was an atavism. But it was also a reversion to something else. When DSLRs, particularly Canons, became popular for video, they retained their DSLR shape – which was in turn based on a film camera shape dictated by a 35mm frame and the necessary film drive. This spawned an industry of workarounds – cages, grips, handles, and all kinds of other accessories that serve as indictments of functional design. Sony’s selection of a “quasi SLR” design for the A7 series is baffling; the a6x00 series is both more comfortable and (lacking a silly fake pentaprism bulge) true-to-function (as is the new A7C), especially when misused for video.

5. Left eye, right eye, leave me alone

About 25-30% of the human race is left-eye dominant, being made up of about 1/3 left-handers and 2/3 people who are right-handed but use their left eye for tasks involving critical focus or alignment. Eye dominance cannot be changed; this is a matter of hard-wiring from an early age. It is not a matter of visual acuity; it is a how efficiently one eye communicates with the brain.

For people who are left-eyed, cameras with left-side viewfinders automatically cause ergonomic problems with the use of top-mounted winding levers and cutesy “thumb grips.” On most such cameras, winding the camera requires you to move your eye from the viewfinder so you do not poke yourself in the right eye with a winding lever. This is disruptive. The Retina IIc and IIIc, as well as the Canon VI-T avoided this by moving the winding actuator to the bottom – and the Konica IIIA and IIIM avoided this by moving the winder to the front. Although the original Leicavit trigger winder was designed to speed up the knob-wind of the III series, the Leicavit M:

allows experienced photographers to shoot up to two frames per second without taking the camera from their eye

The only reason you would need a bottom trigger winder to take two frames per second without taking the camera from your eye… is that you are left-eyed. This is likely the same reason that people tolerated Leica’s relatively sluggish motor winders.

Perhaps the most befuddling thing about left-viewfinder cameras is why users are in manuals are shown with both eyes open (left eye just hanging out there; right jammed against the viewfinder glass). For a right-eyed person, this means that your mind will be trying to reconcile a reduced viewfinder picture with an unaided non-dominant eye while supporting the camera against half your face. Consider also that the center point between your two eyes is now even further from the lens axis. If anything, the left eye should be closed.

If you look through the viewfinder with your left eye, conversely, you can jam the camera in a 3-point brace between your nose and eyebrows and block your other eye with the camera body. And it is here that people of Neanderthal ancestry have a secret weapon: brow ridges.

Blessed are those, I guess, who are left-eyed and have access to left-viewfinder cameras without winding levers. For they shall inherit the stable hand-hold.

SLRs are more egalitarian: with their center viewfinders, they exist to oppress everyone. And we shall know their users by the leatherette and film-minder-window patterns impressed into their noses.

6. TLR/MF/UC – WTF?

There is only one reasonably ergonomic twin-lens reflex: the Minolta Autocord, which allows you to hold the camera and focus without shifting your left-hand grip — and to fire and advance with your right hand. This is a massive improvement over the Rolleiflex’s insatiable need for constant hand-shifts (or having three hands if you use the pistol grip). Even in the Rollei’s end-state – the 2.8GX with its huge focusing knob – the operation is barely comfortable. The persistence of TLRs after the war is a strange thing. Germany always wanted to make medium-format SLRs, and a twin-lens was a way of approximating that before the mechanical engineering caught up. But the TLR, especially when used at waist-level, causes strange camera-to-subject angles for humans and is not the easiest thing to focus (at least Rolleis are not – an Autocord ground glass is slightly easier). Rollei stopped developing twin-lens cameras in the early 1960s, eliminated serial production of the F in 1976, and moved on to its own SLRs. Note that the user of the Rollei in the diagram below is not wearing a tie. This is an important safety tip. Neckties had a tendency to get ingested by the Automat’s film-detection roller, leading to asphyxiations. That is why seasoned Rollei shooters only wore ascots or bowties.

Does anything look comfortable here?

But more seriously, medium format has always struggled with how its cameras should be configured, starting with the Brownie that kicked off the 120 format. Some are boxes (like Hasselblads), some are oversized 35mm cameras (Fuji 6×9, Pentax 6×7). The earlier Pentax can be fitted with a bulky, heavy, and still somehow uncomfortable wooden grip. The 67ii finally got the message about having something of a right-side grip.

Other medium format cameras are standardized around Graflex-style film backs that were designed just after the war and make what would otherwise be slim cameras extra thicc. If a Horseman SW612 had a body with integrated film transport, it would probably be slightly wider but a lot thinner front-to-back. The Graflex-style roll back almost always requires an extended or set-back viewfinder so that you can actually put your eye to the eyepiece. Its principal virtue is that it is narrow, but it also sports a complex film path that brings you to this: if you have interchangeable backs, they are sufficiently slow to load that you probably need more than one.

Conclusion

There have been a few scattered ergonomic successes, like the Vivitar flash grip, the Linhof 220, and those camcorder-like SLRs and point-and-shoots from the 1980s. But those are exceptions to the apparent rules of camera-making: (1) all cameras must be boxes or cubes that don’t fit in the hand and failing that, larger versions of smaller un-ergonomic cameras; (2) all winding must require a hand off the camera or disrupted framing; (3) thou shalt never use the [left] side eye; and (4) if you don’t like what we’re offering, stuff it.

End-stage​ Nikon manual focus

n6006

There must have once been an awkward moment when Homo sapiens neanderthalensis saw a gangly baby Homo sapiens sapiens and wondered, for the first time, what the future would be like. The Neanderthals basically merged into the surviving human line (or were eaten —  the explanation seems to vary now) — and essentially disappeared. But not before giving Europeans those nettlesome brow ridges and occipital buns.

Neanderthal shock happened sooner in the Canon world than it did for Nikon. Canon released its last mainline* manual-focus camera (the T90) in 1986. Canon did not then engage in a merging of genes but instead a lens-mount genocide. FD lenses faded fast as EOS came to rule the jungle. Nikon took a few more years to get there in 1990 with its last manual focus camera, though that camera lingered for five years on the market — and Nikon never really gave up on the F-mount. Well, not immediately. Like Neanderthals, some degree of interbreeding was available, but all that fur began to repel people after a while.  All of this was 23 years ago now.

By the way, when the last newly designed Nikon MF SLR went out of production, this was dominating the disco:

Nikon would in 2001 release the FM3a, but like the contemporaneous Beatles 1 album. It was just a rehashed FE2 with a new shutter. And that was so long ago that kids born then are old enough to vote. If you were an adult excited about the release of the FM3a, you’ve probably just passed out of the “18-35” demographic, if not past the “uncool 44” milestone. But don’t worry – Nikon has your back with retro-rerun cameras like that, the S3 and SP. Because it’s more fun to reminisce with cameras that were shiny and new (the first time) before you were born.

* By mainline, I mean serious and mass-produced. Yes, Canon made a craptastic T60 and Nikon made (or branded…) the FM10, but these were cameras for developing markets or students.

Detour into how Nikon’s product strategy: so many cameras

It would not be a Machine Planet article without a detour into some kind of editorial, and here is one: digital cameras did not usher in the age of meaningless upgrades and gimmicks designed to excite camera buyers into “one more body.” Film SLRs were the greatest feature-chase of them all: the lenses and the film are the ultimate determinants of performance on a film camera; everything else is metering, motor, and in some cases autofocus.

Consider that in 1980-1985, Nikon fielded five prosumer cameras based on the same platform (FM, FE, FM2, FE2, and FA), at the same time it fielded three based on an intermediate architecture (EM, FG, and FG-20), and a next-generation intermediate (N2000/F-501). All of these variations revolve around binary features/exclusions: needle meter or not; matrix metering or not; internal motor or not; program mode or not. And you thought Sony had a short attention span?

To be fair (why start now?!), by the sunset of Nikon’s manual focus cameras in 1995, post-processing was out of the reach of most people. Photoshop was at version 3 and barely able to handle the tasks it routinely handles today (it also fit on 5 Mac floppies…); scanners were insanely expensive; and if you had a bad slide, you were out of luck. If you had a bad negative, you were mostly at the mercy of Candice at Fox Photo to maybe run that one neg through the Fujitsu at N-N-N-3 instead of N-N-N-N (this person actually existed, was roughly my age, and was quite cute).

Even when Nikon made the jump to autofocus, this proliferation continued, with performance carefully meted out between models that used the same AF module (consider that the N50, N70, N4004, N5005, N6006, N8008/s, and F4 used the same module – with outcomes so different, you have to wonder what they were holding back.

But what was going on with the lenses?

Nikon’s lenses had a more tortured history that got off to its first wrong turn when Nikon started releasing metered prisms. That would have been the time to revise the mount to include aperture information (relative and maximum). Almost the entire subsequent drama of Nikon lenses was a product of trying to fix that: prongs, AI, AI-s, CPUs. When the Photomic metered prism came out in 1962, Nikon already knew that it was enough of a market force that it could have moved to a meter coupling in the body without losing its user base. For six long years, Nikon’s meter prisms required the user to set the maximum aperture of the lens on the meter, manually.

Actually, that didn’t just stop in six years. In 1968, Nikon introduced the FTn finder, with its semi-automatic indexing: mount the lens; turn the ring right, turn the ring left, done. The kludginess of this solution was only more glaring when companies like Konica were releasing lenses that could transmit maximum aperture information with a pin on the back of the lens (as opposed to a poky thing screwed onto its aperture ring) and using irises that were consistently linear, so as to allow automatic control of the iris. Granted, shutter priority did not predominate as a single-factor autoexposure method, but the point was that Nikon was well behind the curve. By 1971, Canon’s pro bodies had moved the meter cell to inside the body and were transmitting relative aperture position invisibly.

Nikon’s Aperture-Indexing (AI) lenses did away in 1977 with the prong, song, and dance because they fit cameras that only needed to know how many stops the selected aperture was away from wide-open. If anyone knew what the max aperture of the lens was, it was the user – not the camera. AI was in a way a step backward from the FTN, since it was only a system for transmitting relative apertures. And AI-only bodies turned out to be the full-employment act for repair people and machinists – because mounting an old lens on an AI body, absent modifications to the lens, the mildest of which was a new aperture control ring, would cause damage. AI ushered in a tiny doubled aperture scale, the Aperture Direct Readout (ADR) that some cameras could display in their viewfinders via a wedge prism, like the F2AS, F3, FA, F4, and F5.

The next iteration, AI-s (1981) brought Nikon almost up to date. It finally added a maximum aperture indexing pin to lenses (as well as a pin that transmitted the focal length to the camera. The only camera to fully implement this scheme was the FA, for its program and shutter-priority modes. There were three implementations of AI-s:

  • The FA used the full AI-s protocol for AI-s lenses, going open loop when shooting AI-s lenses (because it knew the maximum aperture, focal length range, and stop-down rate) and selected a program based on focal length. It went closed-loop when shooting AI and AI-converted lenses. By “closed loop,” I mean the camera reads the scene, stops down, takes another reading, and finally fires.
  • The FG and its replacement the N2000/F-301 all used a similar open/closed-loop setup, except these cameras could not read the focal length via the pin and thus only used one program (or one selected by the user)
  • The N2020/F-501 would act like an N2000/F-501, but it could switch to P-Hi from P-Auto when a CPU-equipped lens with a longer focal length was mounted.

Of course, with closed-loop exposure, the only value of AI-s is purely informational; the FA and FG/N2000 systems don’t really need to know maximum aperture to work. And when it comes to “Program” operation for AI lenses, is it really programmed in the sense of a neat little graph – or is it shutter speeds programmed against apertures stopped down against the maximum?

A tale of two cameras

Nikon’s technological peak came with the FA, pretty much the most sophisticated camera anyone had ever seen. Four (count ’em!) exposure modes – Program, Aperture, Shutter, and Manual, all powered by two MS-76 cells. Matrix metering with any native AI lens. Program shooting with any AI-s lens. LCD display in the viewfinder. And… it wasn’t quite ready for prime-time, developing a reputation for having flaky electronics and poor matrix metering. Or so people say.

In 1990, the successor to the FA, the N6000, hit the scene. The N6000 kept most of the FA feature set but swapped in some new features. Incoming ones included:

  • A 2 fps internal motor drive to replace the bulky MD-15
  • Auto film loading
  • Power film rewinding
  • Auto bracketing
  • Slow and rear-curtain flash
  • DX code reading
  • Automatic balanced fill flash
  • An “analog” (graphic) over/under-exposure display that pops up in manual mode
  • Exposure mode indicator in the viewfinder

You could argue that the N8008 was the successor to the “technocamera” FA, but the N8008 was an autofocus camera. Or you might have argued the F4, which is a cross between an F3, an MD-12, and an FA. The departures with the N6000 were somewhat less notable:

  • Elimination of interchangeable focusing screens (which were apparently not a popular feature of the FA)
  • A new reliance on CPU lenses (AF and AI-P), which allowed the correct aperture to show in the viewfinder without an ADR display
  • Loss of program mode for AI-s lenses (due to CPU dependency)
  • Loss of matrix metering for AI-s lenses (same)
  • Loss of a mechanical shutter speed
  • Loss of 1/4000 sec on the shutter
  • Change from MS-76 button cells to the somewhat less common CR223A/CR-P2.

But for all intents and purposes, this was “it.” Although Nikon continued to sell (not make) the F3 into the mid-2000s, the only newish manual purpose-built manual focus design was the FM3a, which is little more functionally than an FE2 with a shutter that could also be governed mechanically. It also followed a six-year period in which the N6000 was off the market.

On Earth-399, Nikon made manual focus cameras from 1959 to 2270. But that is also the universe in which “George Washington freed the slaves… Abraham Lincoln was regarded as the father of his country… and George Custer became president of the Indian Federation.” (“Superman… you’re DEAD… DEAD… DEAD,” 1971).

First in/last in (F3AF/F3)

Nikon had always managed to be both early and late to the AF party. The Nikon F3AF emerged in 1983, just three years into the F3 era. In fact, it came onto the scene at the same time the DE-3 High Eyepoint finder came out (this is the thing that makes the F3 into the F3HP, the most popular variant). The F3AF was the first camera to use electronic contacts to control lens focus, using a contact system that is eerily similar to current Nikon lenses – but with a motor-in-the-lens implementation that most people came to associate with Canon. The manual focus version of the F3 proved wildly more popular and became one of the longest-running Nikons in history, with a 20-year run. That is catalog time, not necessarily production time. When it was time for the F4, Nikon was playing catchup with Minolta and Canon on AF, whose amateur cameras were upping the stakes.

The forgotten Nikons (N2020/N2000)

In 1984-1985, just after the F3AF, Nikon made another pair of cameras, one with AF and one without. These were the N2020 (F-501) and its value-engineered little brother, the manual-focus N2000 (F-301). These were essentially a motorized version of the FG. According to lore, the N2000 was a last-minute decision from the accountants. That’s believable since it allowed the company to drop the FG and make two cameras on a common set of tooling. But it cannot actually be true, because the N2000 was the first of the two cameras to be released – and by a year.

Rather than the interchangeable screens of the N2020 (B/E/J), the N2000 had a fixed K screen (split prism plus micro prism collar), a LED shutter speed display (but no AF indications), and no automatic selection between programs (on the FA, this had required a post on AI-s lenses; on the N2020, it required a CPU to tell the camera the focal length). Common to both cameras, though, was a traditional control layout, a coreless drive motor for film advance, auto-loading, an exposure compensation dial, DX coding, plus pretty much everything the FG had – save the +1.5EV backlight button (the N2000/N2020 had an AE lock button that served much the same purpose). One mystery is why the N2020 was typically sold with an AAA battery holder rather than the N2000’s AA – since it is fairly obvious that the battery chamber was designed around AA. The smaller batteries required a special inset tray. But on the plus side, they do shave some height and weight off the assembled body. And the N2000/2020 is a pretty heavy body.

The N2000 is a camera with a level of elegance that we forget about: a large, bright, spartan viewfinder, a normal control layout, and a certain fluidity of shooting. Motor drives can be very important if you are left-eye dominant. Plus normal batteries that you can buy anywhere. Plus it has nice, sharp edges. It’s just not a camera that has the simulated chrome that is so popular with “the kids today.” And yes, by simulated, meaning that pretty much every “chrome” camera post-1980s has plastic covers.

But what about the N6006/N6000?!

The N6006 is something of a hidden gem in the Nikon line; it has most of the things you like about the N8008 (sans 1/8000 top speed, AA batteries, and high-eyepoint finder) in a smaller package. It is actually pleasant to shoot, though it does carry the stigma of using 223 lithium batteries. That might have actually made a difference a few years ago, when you could walk into a drug store and buy CR123As and 2CR5s, but today, all lithium batteries are more Amazon than the corner store.

The N6006 is one of many Nikons that share the AM200 AF sensor array (the others being the N4004/F-401,N5005/F-401s, N8008/N8008s/F-801/F-801s, and the F4. As you might have surmised from the AF performance differences in these bodies, CPU speed and motor torque are huge determinants of speed. The F4 is tops in both CPU and motor power, and the N4004 has the smallest brain and smallest muscles. The N6006 and N8008 are mid-range, and the N8008 has a more powerful motor.

The little brother, the N6000, loses some functionality compared to its AF twin: no spot metering (because that comes from the AF module), no built-in flash (spite?), and a slightly smaller LCD display (that omits the AF confirmation dot, obviously…). But all the same, it is much smaller and lighter. Oddly, it still does support (or for P and S, requires) CPU lenses. As an adjunct for occasional manual focus with otherwise-AF lenses, it is fine; in fact, examples of the N6000 sell for less than the price of any manual-focus-friendly interchangeable screen for any SLR or DSLR. So I would ask, are you better off…

Take a stress pill: shutter actuations

What is the maximum shutter actuations for the Nikon D700 [or Leica M9 or whatever]?

There is nothing such as “maximum shutter actuations.” People act as if there were some magic number. People freak out about this. The rated number is unlikely to be reached for most amateur photographers. It’s unlikely to be reached by two amateurs using a camera back to back. Maybe even three or four, unless one used the camera at the beach or somewhere gritty.

  • The rating itself is the MTBF, or Mean Time Between Failures. That means that on average, Nikon’s rated shutters last 150,000 cycles. You don’t know whether that means most last to 250,000 and relatively few go 50,000 or whether all of them are somewhere around 150k.
  • There is no warranty that a shutter will get to 150,000. Your two year factory warranty will expire one day, and it could be at 18,000 exposures or 180,000. Doesn’t matter. Nikon is not fixing it for you for free.
  • Inside the factory warranty, Nikon does fix it for free, shutter count notwithstanding.
  • Likewise, Nikon is not fixing your used camera, even its original sale was within 2 years ago, or even if the shutter failed at 8,000.

It’s all marketing.

By the way, when Nikon was coming up with its 150,000 exposure MTBF, that was 4,166 rolls of film, which was more than most people shot in their lifetime. For a pro, a new shutter (which in those days was a $250 repair) cost nothing compared to the cost $12,000 in film you shot before you got there!

Nikon SLR Accessory Finders

moonlanding.jpg

An action finder can be really useful for situations where it is hard to look into the viewfinder – like when you are wearing a space helmet.  Or oversized Italian sunglasses.  This is a picture I took with my DA-20 on a recent vacation.

Introduction

This article [2007] came about because everything I have seen about accessory viewfinders seems to have been cut and pasted from manufacturers’ literature.  This article will (hopefully) help you determine whether you should use one or more of these.  Remember: Nikon sold one accessory finder for every 1,000 F-series bodies.  Although this is a convenient excuse for why the F6 has a fixed prism, it also should tell you that most people learn to live with the standard pentaprism that came with their camera bodies.

Action Finders: DA-2, DA-20, DA-30

The action finders are all huge and heavy (so not for wimps), but they give you some flexibility – like not having your camera jammed in your face.

In an SLR system, eye relief and magnification are closely related concepts.  The higher the eyepoint, the greater the distance the entire frame can bee seen from the eyepiece. The greater the eye relief, the lower the magnification.  The Nikon action finders are designed around an eye relief of 61mm (2.5 inches); the magnification is 0.6x.   Contrary to popular myth, an action finder does not produce a big, “TV-like” image.  It simply lets you see the whole viewfinder from a little bit further back.

Can you use an action finder all the time?  Yes and no.  Because it lowers magnification, the action finder makes it a little more difficult to use telephoto lenses.  If you are relying on focusing screen aids (such as split-image rangefinders, microprisms, etc.) or autofocus, the lower magnification won’t have much impact.  If you use groundglass focusing, life gets a little harder.

Do you need the expensive rubber eyecup?  Yes.  Beware of all the action finders missing this useful part.  Your eyeglasses are not in danger from the action finder eyepieces; rather, the rubber eyecup keeps your eye at roughly the right distance from the viewfinder.

Every viewfinder really has only one eyepoint: the eye position where the whole viewfinder is visible.  Nikon’s high-eyepoint pentaprisms are designed to focus when eyeglasses are pressed up against the eyepiece.

This means that diopter correction is relatively simple: you just pick the correction lens (or setting on an F4, F5 or F6) that works in one position.  You may notice that you use different viewfinder corrections for glasses and contact lenses with the same prescription; part of this is the difference in distance from the camera’s viewfinder system.

With an action finder, your eye could be anywhere in the range from right against the eyepiece to the magic 61mm from it.  Although this does not seem like a very big range, your eye works very hard to see the focusing screen as the distance increases and diminishes – much the same way that a camera lens needs to extend or retract much more when it is focusing on a close object.  The rubber eyecup keeps your eye at the “right” distance: the one where the average eye can focus comfortably.  If you don’t use the eyecup and press your eye up to the finder, you might find your eyes a little bit fatigued after a while. Unfortunately, the usual solution for this problem is absent: the action finders have no built-in adjustment and there are no accessory diopters.

The F3 action finder (DA-2) meters the same way that the F3 standard one does – it doesn’t.  On the F3, centerweighted ambient metering and centerweighted TTL flash are measured by a sensors in the camera body.  The body of the finder is made of brass.  The eyecup is rectangular and snaps on over a large rectangular plastic frame on the back.

The F4 action finder (DA-20) gives you a choice of centerweighted or spot metering via a switch on the side of the prism (like the DP-20).  The DA-20 outer housing is plastic.  It features a normal TTL hot shoe (no locking pin).  The DA-20 has a similar eyecup to the one on the DA-2. The DA-2 provides an abbreviated viewfinder information display (the lower display is actually part of the DP-20, not the F4 itself)

Exposure mode Small window (left) ADR window (center) Focus ind.
P or P HI “P” + auto-selected shutter speed Minimum aperture of lens (or other aperture and “fEE” in left window) Minimum aperture of lens (or other aperture and “fEE” in left window)
S Auto-selected aperture Minimum aperture of lens (or other aperture and “fEE” in left window) Minimum aperture of lens (or other aperture and “fEE” in left window)
A “A” + auto-selected shutter speed Aperture set on lens Minimum aperture of lens (or other aperture and “fEE” in left window)
M Shutter speed + reading of how off from normal exposure (e.g. +2.0) Aperture set on lens Minimum aperture of lens (or other aperture and “fEE” in left window)

One variation of the DA-20 (which I assume was made for underwater work – and which I stupidly returned to KEH) has a built-in illuminator for the lens aperture ring.  It comes on whenever the meter is on, so watch your batteries.

The F5 action finder (DA-30) gives you matrix (not 3D or color), centerweighted or spot via a similar switch to the one on the DP-30 (standard F5 finder).  Its body is made from a crinkle-painted l.ght alloy.  It has a locking hot shoe.  Given its functionality, I suspect the DA-30 shares its electronics with the DP-20 (the F4’s standard finder).  The DA-20 also has a similar eyecup to the one on the DA-2.  You get all of the same viewfinder information that you get with with the DP-30 (standard F5) prism.

Magnifying Finders: DW-4, DW-21, DW-31

Magnifying finders are fun.  They eliminate the light loss from the pentaprism and give you a magnified (6x) view of the whole focusing screen.  Distortion is very low.  These have very low eyepoints and are designed to be used without eyeglasses (precisely why the Nikon magnifying finders have correction from +3 to -5 diopters built in.  Once you press your eye all the way in, it’s a revelation.  These have three (by my count) multicoated elements.

Magnifying finders are very useful with standard groundglass focusing (D-screen) and with astrophotography (M-screen).  You can actually use them for anything with the sole exception of (1) situations where you need to keep the camera high (at eye level) and (2) situations where you lose track of left-to-right movement. The latter is related to the fact that all magnifying finders reverse the view left to right.

The DW-4 (F3) gives you centerweighted ambient and TTL flash metering.  The DW-21 (F4) and DW-31 (F5) give you spotmetering for ambient and for flash.  The F4 and F5 magnifying finders require the oddball SC-24 TTL cord, which plugs into an eight pin connector on the back of the finder.  I am not sure why the first flash needs eight pins, since the hot shoe only has five pins (three dedicated, one hot shoe contact, one shoe).  The SC-24 terminates in a standard Nikon TTL hot shoe.

Magnifying finders (and waist-level finders) seriously impede taking vertical shots.

Waistlevel Finders: DW-3, DW-20, DW-30

First it killed the Rolleiflex.  Now it’s killing me.  35mm SLRs started with this type of finder; thank heavens it didn’t survive in  the mainstream.  The pentaprism displaced the waist-level finder – and the fact that a pentaprism shows everything correctly, right-side up and correct left-to-right, and not brightness, carried the day.

Today, the waistlevel finder has only three real uses: shooting above crowds, shooting from low angles, and shooting on a copystand.  The DW-3 (F3), DW-20 (F4) and DW-30 (F5) are essentially the same thing: just a popup hood through which you look at the top of the naked focusing screen from a foot or more away.  This makes manual focusing difficult and pretty much defeats any focusing aid in your focusing screen.  Things are better with the autofocus cameras.

Each has a small 5x magnifier that provides a small, highly distorted view of the center of the focusing screen.  While this is sufficient for copy (and some macro) work, it is pretty unpleasant for general use.  This is no different from a standard Rolleiflex TLR viewfinder.  The only reason people tolerated it on Rolleis was that in the olden days, medium format pentaprisms were so dark as to be useless.

Metering and TTL flash are similar to the magnifying finders.  The F4 and F5 versions use the same TTL connectors that the magnifying finders do.

The principal virtue of the waist-level finder is that it is cheap, simple, compact, and lets you do a couple of unique things.  If you don’t do those things, skip this type of finder.

All SLR lenses are Coke® bottles, right?

L1009734

Click to enlarge. The eyes are the focus point. What lens took this?

The advent of digital photography has made a couple of things clear: (1) many pros did not have so much talent as ability to overcome barriers to entry and (2) much of what you were told about lens quality – in terms of SLR versus rangefinder – was (or is now) untrue. This second point bears some examination.

What is the state of play on SLR vs rangefinder lens quality? The perception of SLR versus rangefinder lenses was developed when both shot on film, and there has been a major reversal of fortunes. Film was not sensitive to the angle of incidence of light coming from the back of the lens, and because rangefinders did not have mirrors, lens designers could make symmetrical lenses whose rear elements might sit just a few millimeters from the film surface. This knocked out distortion, incurred a little bit of vignetting (which was largely absorbed by the latitude of negative film, and resulted in a compact package.

SLR lenses, on the other hand, had to design around mirrors. So lenses under 50mm generally had to start with a longer focal length and then compensate it down by introducing a negative element in the front. This retrofocus arrangement generally compromised distortion and sharpness slightly, but it produced a good enough result that SLRs were able to exterminate rangefinders as mainstream cameras. But today, when the imaging surface is a flat sensor with a Bayer pattern, chromatic aberration, angle of incidence, color shift, and vignetting became big issues for traditional rangefinder lens designs. Even Leica’s very expensive wide-angle rangefinder lenses, on Leica’s very expensive bodies, were now capable of returning disappointing results in terms of color shifts and vignetting.

The goal today is sometimes called telecentricity, which is commonly understood to be the situation where light rays hit the sensor parallel to the lens axis. It is still achieved by retrofocus designs. It is telling that many Leica and mirrorless wide angles that avoid color shift and vignetting are creeping up in size to SLR lenses. Witness Leica’s fast wide-angle lenses, which are quite large – especially when you compare aperture to aperture. A 21/3.4 Super Elmar has a 46mm front thread; the 21/2.8 Elmarit-M has 60mm, which is only a hair smaller than a 20mm f/2.8D Nikkor (at 62mm). But nowhere is this phenomenon more stark than in Fuji XF lenses, where the register is shorter, lenses cover an APS-C image circle (much smaller than a 35mm camera’s) nor have to clear a mirror, and the lenses yet are 80-90% as large as SLR versions of the same.

Why do SLR lenses meet our expectation bias? In one sense, it is fair to complain about the quality of SLR lenses because the end result is not what we want – and measured as a system, they indeed underperform. But in an era where SLR lenses are being adapted for use in other things, it is fair to deconstruct what part of this is fairly attributed to parts of the system we are no longer using, such as the traditional SLR itself. And let’s be clear about this: until the advent of mirrorless cameras, the SLR (or DSLR) was the only way to achieve perfect, parallax-free framing and to reliably focus long telephotos and macro lenses.

— Focusing wide-open, shooting stopped-down. All SLR lenses are focused wide-open, which makes focusing accuracy vulnerable to focus shift. This phenomenon, which comes with spherical aberration and “good bokeh,” means that a lens might be perfectly focused at a wide aperture but back-focused when the aperture stops down for shooting. This same thing afflicts both rangefinders and SLRs, only in rangefinders, it is written off as “focus shift” and in SLRs, it is called “being a poor performer.” Aspherics and floating elements help mitigate this – and both are in play on modern lenses of all types.

— Suboptimal focusing screens. You can’t win with a single screen on an SLR. The original SLR focusing screen, a plain ground glass, excelled at focusing telephoto lenses because as the focal length increased, so did the magnification of the subject that the photographer sought to focus. But this screen was dim in the corners and sometimes dim, period. It also failed with wide-angle lenses, where the details critical to focus were actually reduced. Over time, SLRs developed focusing aids like split-image center reticles (actually tiny rangefinders). They also introduced fresnel surfaces to brighten the corners. These made it simpler to focus lenses 50mm and down, but they degraded the ability to accurately focuses lenses 85mm and longer.

— Small viewfinder magnification. A key constraint of camera viewfinder systems is that eye point and magnification are in direct opposition. In practical terms, this means that to be able to see the whole picture through a reasonably-sized viewfinder, especially while wearing eyeglasses, the picture must be reduced. This degrades the focusing abilities of every SLR focusing screen.

— Taste-making. The problem with publications like Popular Photography (and now sites like DxOMark) is that they focus the user’s attention on tests that bear little or no necessary connection to real life.The old-school photo magazines paid little attention to rangefinder lenses, so the tests of SLR lenses were generally focused on the relative merits at huge enlargement factors, and not surprisingly, among SLR lenses, the results favored more expensive glass (the larger advertising budgets of the major companies is always suspicious as well). This did not affect the sales of SLR lenses in general (because at the time no one really liked rangefinders), but it did lead to a perception that anything other than a name-brand Canon, Nikon, Pentax, Minolta, or Konica was garbage. This was an inaccurate and unfortunate perception for three reasons: (1)  Cosina, Tokina, and Sigma were making some of the major brands’ lenses under contract; (2) some of the aftermarket lenses performed adequately for the purpose; and (3) the blanket perceptions about these products, particularly third-party lenses, has landed literally millions of completely usable (if not in some cases very good) lenses in landfills.

— Leica people. Yes, we said it. For all of the doctors, economists, attorneys, CPAs, and engineers who own these and similar rangefinder cameras, there is a widespread misperception that MTF figures for SLR lenses – like home run statistics for Japanese baseball – need some kind of implicit adjustment downward to be comparable to MTF for rangefinder lenses. Not so. MTF is MTF, and it is measured in standardized procedures that do neither the camera body nor care about the lens design itself. It is of some note, conversely, that Leica’s presentation of 5lp/mm (a largely obsolete measure relevant primarily to optical prints) leads to an impression that Leica’s MTF numbers are “higher and flatter” than comparable brands.

Turning the world on its head. Two things changed the picture (so to speak), and quite radically.

— First becoming last. As noted above, he advent of 24x36mm (“full-frame”) digital cameras has exposed just how poorly some traditional rangefinder lenses perform when they project images onto flat sensors. That negative effects are minimized on smaller digital RF and mirrorless platforms (because those corners are effectively cut out of the picture) is immaterial; the only compelling thing about using rangefinder lenses on another camera is killer wides. And frankly, native APS-C lenses – because they are designed correctly for digital sensors – crush adapted rangefinder wides.

— The closed circuit. One of the things that makes mirrorless cameras really, really good is that their autofocus systems can gauge focus from the sensor itself. But this benefit – which bypasses all of the focusing infirmities of SLRs. But the same advantages obtain when attaching manual focus lenses. Not only can the user see the image exactly as resolved by the sensor; he or she can see it at greater magnification or with focus peaking. Getting virtually any lens on to any body never seems to cost more than $30, and there is now plenty of opportunity for exploration on an epic scale.

How do SLR lenses do on digital bodies?  The answer is, “it depends on the lens.” The first place to start is the adapter. It needs to be plane-parallel and to have the correct register. Many adapters are off-kilter and are cut short to “assure” infinity focus. They will need to be shimmed sometimes to achieve correct infinity focus (if you want to scale-focus wide-angle lenses). Once you get past that, this is what you can expect. Over the next few posts, we will explore some favorites, but we will spill the beans on a few “sleeper” lenses here. Caution: be careful with M42 (Pentax Screw Mount) lenses with automatic apertures – you may need to disconnect the stop-down pin to get to shooting aperture.

— Wide angles (<35mm). Because these lenses have a palpable focus point wide-open, an EVF, either at magnification or with focus peaking, is the best way to focus these. Consider also that if you are shooting traditional rangefinder wides and actually focusing them, you have to look first in the camera’s viewfinder/rangefinder window, then switch to an external finder. An EVF kills both birds with one stone (or look). Wide-angle lenses will generally perform best close-up, where errors in infinity register will have the least effect (and you should never be aiming for infinity with shorter than a 35mm lens anyway – since subject details are getting too small to give any impression of sharpness). If your thing is close-up, wide-open shots, the Vivitar 20mm f/3.8 Auto is one of the best and cheapest things going. The header picture for this article is shot with it, wide-open on an M typ 240 (which is way more resolution than any historic 35mm-format lens was ever made to handle). Reasonably low distortion (-5 on Lightroom, if you have any straight lines in the shot), high sharpness (click to get it full-size, then blow it up to check out the eyes, which are the focus point), nice bokeh, and reasonable vignetting. Vivitar lenses should not be ignored; this was a company that often employed its own lens designers in the U.S. and produced many manual focus lenses that were quite good (disregard the autofocus products and recent-vintage manual focus lenses, which can be pretty bad). Did we mention that it often costs less than $60? The Tokina RMS 17mm f/3.5 manual focus lens is also pretty good, though it often shows up a bit overpriced. Adapted wide-angles are not as compelling on APS-C cameras – because they become slowish, semi-wide lenses with huge form factors.

— Normal lenses (50mm-60mm). This is the place where there is not much point to adapting lenses – except on APS-C cameras, where these behave like fast-ish short telephotos. The lens that came with your camera is going to outperform an adapted lens – and focus both faster and more accurately. Plus you already own it. One exception is in super-speed (f≥1.2) normal lenses, which become the equivalent of a 75/1.2 on an APS-C camera or remain an awesome 50/1.2 on your Leica M or Sony A7. If Leica users need EVF to accurately focus the $10K 50/1 Noctilux, you shouldn’t feel bad about using one to focus your 1970s Nikkor. The nice thing about 50/1.2 lenses and 57/1.2 lenses is that they were every SLR manufacturer’s showpiece lens; the optics are almost always great. The other use case for adapted normals is for lenses with “character,” such as Tessars and Sonnars. The Soviet Industar 50-2 (50mm f/3.5) and -61 (f/2.0) (both 50mm Tessar, M42 SLR mount) fit this bill.

— Telephoto lenses (≥75mm). Assuming that you can get a high enough shutter speed to use these (you generally want the reciprocal of 2x the focal length or faster), this is where things get fun. SLR telephotos are often a stop or two faster than rangefinder telephotos, and they often have slightly lower contrast wide-open (which was never historically a problem, since for most of history people used these lenses to shoot high-contrast, low-light pictures). Focusing is less challenging due to the higher magnification, and with many of these, focus peaking suffices (magnification would be absurd). From a quality perspective, even cheap telephotos work really well. Here, we would jokingly tell you to “go big or go home.” A worthwhile lens to try is the Konica Hexanon AR 135mm f/3.2. This is the best of Konica’s SLR 135s, it is the cheapest ($50 on Ebay), and it focuses down to a meter. Make sure it’s the 3.2 and not the 3.5 or 2.5. The Soviet Helios-40-2 (85/1.5) is a cult favorite, but there is no argument that it is cheap at $300-400 these days. It was fun for a C-note, but those days are over. The Soviet  Jupiter-9 (85/2) (Sonnar, M42 SLR mount) is also a solid portrait choice.

— Zoom lenses. There are only three true “zoom” lenses for digital rangefinders: the 16-18-21mm Tri-Elmar, the 21-35mm M-Hexanon Dual, and the 28-35-50 Tri-Elmar. The first two are expensive ($>2000), and the third is kind of ho-hum. And none of them is a true zoom; they are all lenses that have two or three discrete focal lengths. This is an area where the things that are most fun are not intuitive. Wide-angle zooms can be unwieldy when adapted to digital cameras; telephoto zooms can be somewhat challenging to control (but have some merits). The midrange zoom is where your sleepers lie, and if you are a heavy EVF user, a good, compact 35-105mm is not a bad thing to have around. One to check out is the AF 35-105 f/3.5-4.5D Nikkor ($100-150 used). This is a tiny, aspherical, internal-focusing push-pull zoom. It is quite sharp and contrasty, and if you ever get back to your Nikon DSLRs, it is quite a nice lens. It was not a cheap lens when it came out, but selling at around $100 today, it’s one to consider.

— Novelties. Many fun (and very occasional functional) accessories were made for SLRs – cheap fisheye lenses, 90 degree attachments, telescope adapters, and the like. For occasional use, these can be economical and entertaining. Fisheyes in particular are something that are, for most people, not worth investing in. Many of these lenses want 24×36 sensors to reach their full, ahem, potential.

Conclusion. It’s probably not good to counter one generalization (that old SLR lenses are no good) with another (that they are all good). For people who occasionally need a focal length, frequently use EVFs to focus heavy fast lens or telephoto users, or are already zone-focusing wide lenses, older SLR lenses are an avenue that might be helpful. Not every SLR lens is a great performer at a small pixel pitch, but there is value in seeing what can be done more simply and cheaply than forking over another several hundred (or several thousand) to buy a native RF or mirrorless lens that comes out of the bag once or twice a year.

Kodak DCS Pro 14n First Shot

20070901_164855.jpg

I always looked down my (Roman) nose at cameras made by film manufacturers. Who would have thought, then, that after 18 years of photography with real cameras, that I would own a Kodak (14n) and a Fuji (GSW690III)? After a few weeks with the DCS 14n, and months of reading petty complaints about it, it’s time for the blow-by-blow. The 14n is a harsh mistress, but imagine some of the tricks she knows by now:

This is the most important part, so let’s knock that part off first. The 14n has an absolutely fantastic CMOS sensor. It’s not fast at a native speed of 80 and a maximum excellent picture speed of 160, but since when were fast film or fast CCDs any good. The sheer size of the gives you some distinct advantages.

  • No adjustment in angle of view. This is particularly important if you have a collection of fast wide lenses. It is also important if you like fast portrait-length lenses.
  • No change in depth of field. The “crop factor” present in most digital SLRs requires you to use shorter lenses to get equivalent fields of view. The problem is that the depth of field of a 18mm lens is still the depth of field of a 18mm lens, even if the angle of view is of a 24mm lens. And there’s no way to get a 105mm’s field of view with a DX prime.
  • DX lenses are a fraud. We were told that smaller-than-24×36 sensors would result in liberated lens design, higher speed and less size/weight. Wrong. DX lenses, especially wides, are just lenses with more retrofocal distance. DX lenses make it less challenging to build sensors, since more light is straight-on (telecentric). Worse, they are slow. Since when is it ok to have a constant f/4 zoom? Put simply, DX lenses are nothing but a substitute for engineering on the back end.

Is there noise at high gain (ISO settings like 400)? Yes, but not as obnoxious as you would be led to believe from reading on the Internet. Does it take a ton of in-camera processing to make 35mm lenses designed before digital was even thought of work properly on a chip? Yes. Does the Kodak system achieve it? Remarkably. Are the results worth it? Hell yes.

The main user interface is pretty good but not phenomenal. The VF covers 92% of the frame. It’s not as bright or clear as an F3 or F4, dimmer than an F5 and about on a par with the F100. It’s adequate but not exceptional for manual focus operation. At least it has a real pentaprism, sucka… Let’s face it, viewfinders aren’t what they used to be. Put an E screen in an F4 and you’ll see what I mean.

The info readouts are highly legible green LEDs. The focus point (selecable from center, left, right, up or down) is indicated by an LCD bracket that lights up red in low light. There are no more left and right arrows for out-of-focus direction. The flash indicator is an eyecatching red color. There is also an indicator to show metering mode (spot, center, matrix).

In a trick that I find pretty cool, the entire viewfinder dims and blurs (and the focus points and metering reference circle disappear) when you pull the battery out of the camera. Wow. Guess there’s no picking this one up and forgetting the power source. I suspect that this is what drains the battery when you leave the battery in, even when the camera is off.

Outside the F5, Nikon focusing comes in two flavors. Smart or strong. The smart sensors are found on things like the F80 and F100 and seem designed to drive AF-S lenses by quickly computing focus. Call this the BMW 318 theory. The strong motors are found in older bodies like the F4, where the detection and computation is not so strong, but the motor has a lot of torque. Call this the Pontiac GTO school. Based on my tests with some AFS and non-AFS lenses, my conclusions were:

  • Light primes (20/2.8, 24/2.8, 50/1.8) – quick focusing but not earth-shattering.
  • Heavy, internal focus primes (28/1.4, 105/2 DC) – not as fast, but still ok.
  • Old-style AF zooms (35-105/3.5-4.5) – slow.
  • Low-end AF-s (24-85/3.5-4.5) – medium speed. This lens inexplicably produced underexposures with flash. Why?
  • High-end AF-s (28-70/2.8) – now were getting somewhere. Bankruptcy! But they’re fast.

Focusing is extremely accurate. The AF brackets are huge in the F80/14n/etc., making selection of focus as a point on the subject a somewhat uncertain from the user’s end in looking through the viewfinder. You just have to take it on faith. It works. If the light gets really bad, you can turn on a white AF illuminator light. Your subjects will hate you for using it. Capture their scowls. Other than using the electronic rangefinder function, manual focusing is a vestigial capability in the viewfinder. The focusing screen has neither the brightness nor the matte surface required to do the job. This is really too bad; had this been an F4s platform instead, the focusing would have been great.

Size and weight. If you are used to professional-sized cameras like the F4, F5 and EOS-1n, why do you think that this camera is big and heavy? The bottom pod (for lack of a better word) houses a huge-capacity battery, a Compact Flash Type II card (or Microdrive). This camera is not as big as it looks in pictures, and it is in fact quite light compared to an F4s. I’m sorry that it can’t have that blowaway, throwaway feel of the Digital Rebel – and with telephotos and even the heavier wides, you actually want some weight on the camera end. The amount of hardware necessary to replicate 35mm film in performance is something that should be sobering to people who think that one day Leica is just going to bring out a digital back someday for the M cameras.

Battery Life. With the current version of the firmware (4.5.x), little use of the LCD, and the shortest meter-off setting, I was able to have the camera sit turned on for 7 hours and then shoot 132 14Mp RAW files and about 78 1Mp JPGs (recorded simultaneously with the RAW). I then secure-erased the microdrive (i.e., the camera wrote and rewrote the entire 1Gb several times) then quick formatted both it and the 256Mb Secure Digital card. Not too shabby for a battery that charges in about an hour. Three batteries would pretty much cover it for a really long day’s shooting.

Card Capacity. The camera has a nice separate LED display counting down available frames. RAW files are computed using the full-freight size (14Mb), but they are stored compressed. Typically, on a 1Gb Microdrive, this means about 90-96 frames per 1Gb card – roughly equivalent to 4 rolls of 135-24 film. Or, if I was reading the display right, over 1,300 1Mp JPGs.

Burst Capacity. Camera write speed with a a Hitachi 1Gb Microdrive clocked at 4Mb/sec, about as fast as any Compact Flash device. You can shoot 6-7 RAW frames continuously before the 256Mb buffer fills. You can then shoot the next picture 5 seconds later. The camera continuously writes to the storage devices. If you are shooting simultaneous RAW and low-res JPEG, you can take 2 frames about every 15 seconds, which is not bad unless you are shooting a war. In-camera JPG is pretty rough on speed and battery power. Given that you really want to use Photodesk to do the hard-core processing, you can probably skip the in-camera JPG.

In terms of transfer rate to the computer, popping that Microdrive into a USB card reader and letting her rip takes about 20 minutes. I’m sure that a firewire reader would be faster. This camera does not mount as a Firewire drive through its computer connection; that connection only exists to let Camera Manager read the files in the camera.

Shutter Release. Thank God for small favors. The main shutter release is threaded for a standard cable release; there is also a Nikon MR-3/etc. terminal on the bottom. There is a vertical release that is only active when the camera is… vertical. Cool. No more having the thing go off by accident when you grab the camera.

Ok, screw that technical stuff. So how well does it do black and white? The short answer is that it does pretty well, although it’s not like shooting T-Max 400 on a 6×9 camera. If you know what you are doing with film and conventional printing, you will be able to deal with the 14n. The first way is that you can pretty smoothly adjust perspective with a huge digital file. The picture below was taken with a 20mm f/2.8 AF Nikkor.

20040313_165531.jpg

The second way is that because you are shooting onto a smaller sensor compared to a medium-format camera, wideangle lenses are shorter, faster, and have a lot more depth of field. This is the reverse of the problem with DX lenses.

20040605_135829.jpg

The third is that filtration doesn’t really matter that much – nor can you readily duplicate it in digital. Stick around this camera and you will have to learn a lot more about contrast control than you probably ever cared to.

BS Internet gripes. Ok, since this is what you were waiting to see. Like any Internet rumor (Hexar RF, anyone?), the gripes concerning the 14n are pretty overblown.

  • Cold startup time is 7 seconds, not 30 as some people claim. This is not an eternity, and you can leave the camera on until you need it.
  • Burst depth at 256Mb buffer is 6 RAW frames, more than enough for any normal application. If you need something faster, you better reach for a Nikon D2H.
  • There is zero noise up to 160 ASA. After that, you need to use Photodesk and realize that all high-speed media (film, digital cameras, etc) have noise and that the difference is that the Nikon, Fuji and Canon DSLRs seem to address that only by wasting all the shadow detail.
  • Nose-activated LCD was eliminated in firmware 4.5.5. Now you can disable the “Ok” key that turns on the screen.

So get over it!

How does it compare to the Fuji S2? There is no comparison. The Fuji has low noise for fast shots, and that’s it. The Kodak has better software, higher resolution, and no crop factor. The Fuji — if you can find it — no longer has a price advantage (the difference is a scant $600 — and I actually paid less for a 14n than what you can buy the S2 for…) and that advantage is destroyed by the fact that you have to refit the short end of your line.

How does it compare to a Canon 1Ds? The grass is always greener. If you dig up a Canon 1Ds bulletin board, you will see all the complaints about it – including some pretty serious chromatic aberration with wideangle lenses and not-so-good software. For all of the Kodak’s noise faults, its omission of microlenses spares the wideangle user this issue. And the 1Ds costs $8,000, which is three times what the Kodak costs. Unless it’s a writeoff on your taxes, your money ($5,500) is better spent on four European vacations or a couple of trips to Asia to use the equipment. The one thing that the 1Ds does have is a little tougher body — but the kind of spill that would damage the 14n would also damage the 1Ds.

How does 14mp compare to film?  This is a difficult question to answer, because there is no single answer.  Digital camera manufacturers generally claim that anything is as good as medium format, and people’s opinions of what is enough resolution tend to center on the minimum that does not look bad.  150dpi can do for passable prints for some people.  72dpi, or one megapixel is enough for any on-screen application.  If all you are doing is web work, the 14n is serious overkill in every department, not the least of which is price.

But for prints, you have to arrive at a minimum acceptable quality level. We can pretty safely assume that a Fuji Frontier minilab print (scanning 35mm film and digitally outputting to photo paper at 302dpi is a pretty good benchmark.  So we should see how big a 14n print can get and still maintain that resolution. A 14 megapixel (4500×3000) image, translated to a 6×9 inch print (dividing the long side of the image in pixels by the long side in inches), equals 500dpi.  At 8×10, it equals 450dpi.  At 11×14, it is 321dpi.  Bearing in mind that 11×14 is pretty much the practical limit for enlarging 35mm film (except for 35mm film the limiting factor is the grain), you realize that the 14n can reasonably hold its own with 35mm film in terms of enlargeability.

On the other hand, claims that any digital system under 14mp is competitive with medium format is a little bit suspect. Here is a simple table for people who want arbitrary answers, based on my observations.  These DO NOT apply to cameras with less than the 14n’s pixel count.

Compared to… Sharpness/Resolution Tonality / Color Fidelity
Pre-1980s 35mm SLR scanned @2800dpi
14n generally wins. 14n wins.
Modern 35mm SLR scanned @2800dpi Dead heat, assuming proper scanning technique.  Film has an edge above ISO 200.
14n wins in both tonality and fidelity under most circumstances. 
Pre-1970 6×4.5/6×6 Camera (b/w) 14n wins due to higher resolution lenses and lack of film flatness issues.
14n wins
Pre-1970 6×9 (b/w) 14n wins due to higher resolution lenses and lack of film flatness issues.
Film wins.
Modern 6×4.5/6×6 Camera (b/w) Film wins at ISO 400 and below.  Above ISO 400, grain diminishes resolution.
Film wins, especially when printed to silver paper.
Modern 6×7 Camera (b/w) Film wins due to overwhelming image size.
Ditto
Modern 6×9 Camera (b/w) Film wins due to overwhelming image size. Are you kidding?

 

DAST