Archive | Darkroom RSS for this section

Guerilla darkroom 2020: what to do with all that stuff

So three months went by in the blink of an eye, and I didn’t get around to Part Deux. Ok. Better late than never. Now that you have your unreasonably large arsenal of cheap darkroom hardware in place, let’s talk about some developing techniques.

The Box-Step. I had a professor in graduate school, a colorful character, ex-Marine, current pilot, and general hellion. He would write obscene puns into his own seating chart and then read them back and ask what other hellion wrote them. And then chuckle. There was a Jennifer day. There were pokes at city-slickers who didn’t know what a screw augur was (I’m pretty sure that he left Nebraska before he ever saw one in person). But I digress. His greatest line was that in school, they make you think that everything would be [a tango] but that when you get to the real world, it’s all a [box-step]. The bracketed words here stand in for obscene descriptions of something else. If you’re over twelve years old, you’ll get the joke. But Professor X did have a point: there is too much fanciness and not enough solid technique. And that goes for developing.

Developer. Get out of your head that you are going to do 1+200 standing Rodinal development. Put pyrocatechol-whatever in the back of your mind. Caffenol. Copex Spur-whatever. Buy a packet of D-76 (or equivalent) or a bottle of HC-110 (1+31!) and take it from there. Dig up your film manufacturer’s data sheet. Not “the Massive Dev Chart,” which I can tell you firsthand has some unusual and very obviously wrong information in some entries. Start with basics. Start with the book. The brave men of Kodak and Ilford killed themselves working on these meticulous tables. Do honor to their memory.

Mixing. Mix your developer well. Don’t be afraid to use very warm water with D-76. It’s actually shockingly difficult to break, cooling time is harmless, and solidified powder at the bottom of a bottle is unrecoverable. Let your developer sit overnight so that it returns to room temperature.

Temperature control. Here’s a life hack: if your darkroom is within 5 degrees C of any of your data sheet’s developing times, you temperature control your developer (only) and leave the others at room temperature. This is part of the reason you let the developer sit overnight. Five degrees C is not enough to make a difference for stop bath, fixer, or anything else. Most basements seem to be at almost exactly 20 degrees C, which is why that is a good temperature to pick. Most tap water is easy to get close to 20º C because it is traveling through pipes in earth that is 20º C.

To rapidly warm developer, put the bottle in a tub of warm water and monitor the temperature periodically. Do not let the thermometer touch the sidewall of the bottle, and agitate the bottle every few minutes.

To rapidly cool developer, pour it over a reusable “ice pack,” be it the kind that is like a foil sheet of ice cubes or a solid blue plastic block. This way the temperature goes down without dilution. Otherwise, you can lower a plastic bag full of ice cubes into your container of developer to cool it down.

Development time. Like I said, if your room temperature is within range, pick the time/temperature combo on the data sheet and run with it. If you don’t have a data sheet, a good starting point for normal-ish developers and normal-ish b/w film is 7 minutes at 20º C.

How do you calculate that time? The first question is “small tank” or “big tank.” Generally, for an eight-reel Paterson, you’ll use the big tank. Surprisingly, you will be fine using that for the 2-reel version. Small versus large tank in Kodak parlance is mainly a function of how easy a container that size is to agitate. You will not be rapidly flicking 2.5L of liquid in a tank with one hand.

Do you start the timer when you start pouring developer in or when the tank is full? It actually doesn’t matter, as long as you always do it exactly the same way. I generally start the timer when the tank starts to sound full (you will hear a gurgle) and take the first couple of seconds of the timer to fill the top.

Fill level. The tank should always be full enough that at least 1/3 of the light-trap cone (this is Paterson, remember?) is filled with developer. Do not do the bare minimum. Modern films have surfactants (like soap) in them that make them wet more evenly. This means bubbles. And your bubbles must have a place to go, above the film. Unless you want weird dark spots on your clear 35mm skies.

The burp. Get that lid on. Press hard in the middle to force the air out and make a tight vacuum seal. Hit the bottom of the tank on something reasonably firm (but not concrete!) so that any air bubbles release from the film. Do an initial agitation per the instructions. Then open the lid and let the bubbles bubble over the sides of the light trap cone. Reclose and start your cycle.

Development and agitation. Programmatically, this is how I would execute a 7-minute development with a 2.5L (8-reel) tank. This is based on “large tank” assumptions. The large tank format provides less streaking through 35mm film holes, and you can pretend it is more like standing development. In my exercise, these are the times shown on the timer (any waterproof digital kitchen timer will do, preferably one that counts up after it runs down to 0).

  • 7:00 (not running yet) – start filling tank from a container that can pour fast, like a wide-mouth bottle (see previous article).
  • 7:00 – start timer with tank almost full.
  • 6:50 – agitate and “burp” the tank.
  • 6:05-6:00 – end over end 5x
  • 5:05-5:00 – end over end 5x
  • 4:05-4:00 – end over end 5x
  • 3:05-3:00 – end over end 5x
  • 2:05-2:00 – end over end 5x
  • 1:20-1:15 – last real agitation
  • 0:15 – pour straight down into a wide-mouth container
  • + 0:10 to +30 – fill with stop bath and rapidly agitate

You’ll note that this seems none-too-precise. The fact is that it takes about a 10% difference in developing time to make for an obvious difference in the end-negative (N+1 needs 25%, and N+2 generally 50% extra). 7 minutes is 420 seconds. So even if you have 15 seconds of “imprecision” in the process, it is not that impactful (example: how long is the stop bath taking to fill?).

If you can do the process consistently, then all you have to do after that is dial back your total time as needed to adjust the contrast of the negatives.

Push/pull processing. Shooting Tri-X 400 at EI 320 is pointless. It’s not significant for most purposes. Shooting Tri-X at 1600, though (see top picture here) can be helpful. Push processing generally brightens the highlights by making them more dense on negatives. It does not, repeat, does not really change the speed of the film, which is defined at midtones and below. So you tend to get normalish pictures from mid to high but a lot more blackness below middle grey. Pushing is good for overcast days or flat light; it is not very helpful if you generally lack light. Pulling supposedly improves shadow tones, but modern, straight-line films just need more exposure.

Standing processing. This is mainly for when you have an emergency or can’t identify what film is in that bulk canister. Standing processing tends to compensate all over the negative so you have a moderate tonal range. The downside is that it is a moderate tonal range that tends to defeat the “curve” built into the film and is miserable to print on RC paper. Standing processing takes a long time. Standing processing can lead to streaking. Standing processing sucks if you don’t actually need it. As a good friend of mine told me, standing development is good for taking pictures of lit filaments in lightbulbs and outside of that, covering screwups. Like communism, everyone thinks this would be a good idea if someone could just execute it correctly.

Pyrocatechol. Isn’t it amazing that a chemical that causes cancer can’t cure people’s poor photographic technique?

Caffenol/urinol. I’m not sure if the latter is real (I read about it in a lab book), but if you’re too cheap for HC-110 or Rodinal, you probably shouldn’t be using film.

Exhaustion. If you stick to 20 rolls of film per gallon of developer, it’s generally unnecessary to adjust the development times for successive batches. You pour the 2.5L of used back into the big container (1 gallon, 5L, etc.) and then pour from there for the next batch. Why does this work? Because 2.5L of developer is almost double what you actually need to develop 5 rolls of 120 or 8 rolls of 135. This is because exhaustion of developer is a function of film area (expressed by Kodak as square inches it’s about 80 for a roll of 120 or a roll of 135). It’s not how many rolls. It’s how much surface.

Stop bath. The only thing that stop bath does is change the pH of the film to arrest the development. Indicator is best. Ilford odorless is the best of those. You could probably use vinegar or even water to do this, but stop bath is cheap, and there is no reason to take chances.

Fixer. Fixer usually takes the solution back up to acid (a couple fixers are actually base in nature), which is why it is an archiving problem. Start with the fixing time on the bottle, but you can also take the cut (and undeveloped) end of a piece of film, drop it in the top of the tank, and monitor until it goes clear. Double that time, and your film is generally fixed.

Fixer does not take the purple stain out of film. It removes the unexposed silver, converts the exposed silver, and takes off the anti-halation backing, which is the milky opaque stuff on the back of the film. Anti-halo dye is generally removed by the developer and the fixer remover. And failing that, just put your b/w negatives in the sun for a little while.

Fixer remover and rinse. This process neutralizes the acid fixer and finishes off the dye. Take the light-trap cone out of the tank. Fill your tank with plain water and let it sit for a minute. Dump and refill with water plus a capful of Heico Perma-Wash. Let that sit for five minutes. Dump it out and see all that purple dye go down the drain. Your final rinse is 5 minutes or eight changes of water. That’s it.

Wetting agent. Photo-Flo 200 is designed to be used at 1:200. Try to understand what that means. Generally not more than half a cap to a tank. Too little, and it doesn’t work. Too much, and it gets gummy and nasty. May I recommend this? If your arm-span is long enough, hold the film in a U over a vat of water and Photo Flo. Run it back and forth in the U, dipping the “vertex” into the solution. This technique uses far less solution and also prevents Photo-Flo from getting all over your tank and reels. This U technique – which I cadged from an old Kodak instruction manual on developing orthographic film – helps make sure that the solution sheets off quickly, especially when you finish the cycle (I recommend 10-15 cycles of the U). For this solution, I would recommend distilled water with the Photo-Flo, although you can still get occasional water spots no matter how pure the water.

That wetting-agent contamination is not a big deal (note as above that “bubbling” when you add developer is actually coming from a coating on the film, not some insignificant amount of Photo-Flo residue), but it it doesn’t take much to hang up the little ball bearings in plastic reels.

Hang dry. Hang up your film in a reasonably humid area (basement or bathroom). This allows slower drying (less violent curling) as well as helps cut down on dust. Never, ever, never let drying negatives be so close to each other that they can kiss. If the emulsions get stuck together, it’s game-over.

See how you did. If your negatives are too dense overall, cut back on exposure. If they are thin but have blown-out highlights, you need more exposure. If they lack contrast, extend the development slightly. If they look bulletproof, cut the development slightly. This is a learning process. Note that in an era of scanning, overexposure is not your friend because scanners struggle with dense silver hightlights on negatives. For optical printing, you want normal if not beefier negatives, since there is a ceiling for improving contrast (5+ on Ilford papers).

Guerilla darkroom 2020: hardware selection

Well, it’s been almost 20 years since I’ve did any updates on the original Guerilla Darkroom on the old site, so let’s bring things forward to this year. I’ll assume that the purpose of your darkroom work is getting to negatives for scanning, though almost all of this applies to regular printing.

Goal: get finished negatives. Do not scratch. Don’t go broke. Use what you have on hand. This part will deal with the equipment side. The next installment will cover chemicals and some finer points of (or really, cheats at, technique).

Special hardware

The three critical pieces of infrastructure that you do not have at home are (1) a developing tank and reels; (2) a changing bag; and (3) a thermometer. Let’s take these in turn.

First, get a Paterson Super System 4 tank. A new one (old ones tend to get chipped around the base, and their locking lugs may be loose). A Paterson Super System 4 developing set (tank, agitator, 2 reels) is $34 on Amazon. It’s hard to beat that. Consider that you may want to develop more than one roll of 120 at a time; realistically, this calls for a Multi-Reel 5 or larger.

Don’t screw around with Samigon/AP/Arista clones of older Paterson System 4 stuff.

  • Old-style tanks are not much cheaper.
  • Old-style tanks share the vice of older System 4 tanks: using a gasket to seal, being really easy to cross-thread, and therefore leaking all the time. Super System 4 uses a rubber cap over the whole top, and its funnel/light trap bayonets in.
  • Super System 4 can be agitated using a key that fits through the hole in the “funnel.” This is like having a vertical Jobo.

Do not complain about how much tanks cost. Film photography is expensive. It is a luxury good. You picked this path. Tanks are a critical piece of the developing puzzle.

Steel tanks are functional and use less liquid, but they require a lot more skill in loading film onto their reels. The big argument for steel has been that plastic reels degrade over time. That’s not borne out by my experience; I have some plastic reels that are 20 years old now – and still reliably load 120 film. It all boils down to keeping the ball-bearings clean and not warping the reels through hot water or abuse. Steel reels also are single-size: so you have reels for 35mm and reels for 120, and never do the twain meet.

As to reels, there is little to recommend actual Paterson-brand reels (except that they are basically free with the Paterson kit pictured above). Any compatible type will work, with Samigon/AP/Arista reels being slightly less nice but having a slight edge for newbies because they have loading ramps. Note that with these ramps, you will have to separate the two halves of the reel to safely remove the developed film. With no ramps, you can flex it out if careful.

Second, get a big changing bag. You will use this in lieu of a darkroom for film work. Some bags at Adorama, for example, can hold a Paterson 8-reel tank. To be frank, there is nothing to recommend finding an actual dark room. The inevitable result is that you notice little pinhole light leaks and freak out. Or you get disoriented and misplace things. With a changing bag, you are no worse off for not being able to see what you are doing, plus you can watch television while you load reels. Just don’t wear your Apple Watch or your tritium-lumed vintage watch. Actually, you shouldn’t do that in any circumstance where you are loading film into tanks.

Do not waste time trying to improvise a changing bag. Yes, there are Depression-era guides that tell you that they can be fashioned from sweatshirts, etc., but film had a much lower speed back then, and if you get light-struck film, you waste all of the efforts you made shooting pictures in the first place.

Finally, get a good glass thermometer that can go several degrees above or below 20C and has fractional gradations (recommended: Paterson PTP381, 15C to 65C). Metal thermometers are sometimes hard to read, can fog up, and never seem to be as accurate. You won’t break the glass thermo as long as you keep it in its square-profile tube. This is $25-30 well spent, since an accurate thermometer can mean the difference between usable and unusable negatives. Overly dense negatives are not fun for printing and really not fun for scanning.

Other hardware (not so specialized)

Timer. Could be anything that can be set for a time between 1 and 7 minutes. LCD kitchen timers are great. Anything that disappears when not stimulated (like the iPhone clock app) is not. Try getting that phone unlocked with wet hands. The Massive Dev Chart app has timers built in. And noises. And klaxons. We’re easily amused.

Film leader retriever. This can be used for two different operations. One, you can retrieve and trim the leader square at the end (if you bulk load film, and your camera has a rubberized takeup spool, you may have just left it square). Bonus points for rounding the corners to make the film load smoother into the reel. Two, you can pull all the film out of the cartridge, which obviates opening the cartridge (generally something you would do with a bottle opener – caps are crimped on really, really hard). Many people reload commercial cartridges by leaving a little film out and attaching the new film to that. Here is the Ars Imago (B&H house brand?) version ($10), which is the latest knockoff of the classic:

Scissors. You can use any household scissors. I would recommend something sharp that cuts straight. So not pinking shears.

Measuring vessel. A 1000ml graduated cylinder is customary. If you use HC-110, gradation in ounces may be more practical (since you mix 4 oz of developer to 124oz water to get 1+31, i.e., dilution B). If you want to see a real artifact of the past, some British grads have imperial ounces as well as US ounces and mL.

If you want to get really lazy, you can measure exactly 1 gallon of water into your storage bottle (or 4L, etc.) and mark with a line where the water level is. Dump out the water. From then on, you only measure the concentrated developer and simply fill with water to the line. Surprisingly, or maybe not, the width of a chisel-tip marker line is precise enough. Make sure you use this special bottle on a level surface.

Storage bottles. Bad news here: the thin 1-gallon bottles used for distilled water make really poor darkroom storage bottles. They do not seal well, and the thin plastic is permeable to oxygen. That said, if you are not storing chemicals for more than a month, no problem. Eventually, you will want to save any 1 gallon or 5 liter bottle from store-bought photo chemicals and repurpose it for storage of diluted chemicals. For example, I have an old Photographers Formulary TF-4 concentrate bottle that I user to store diluted Ilford fixer.

Dump bottles. Your life will be a lot more fun if you can quickly dump chemicals when you change stages of developing. The dollar store had some cylindrical 1-gallon cereal containers marked off in liters and fractions of a gallon. With a 20cm opening, these can catch your dumped chemicals. Key qualities of a dump bottle:

  • Has a wide mouth so that a tank inverted above it will dump straight down.
  • Holds at least 2.5L of liquid – the capacity of the biggest developing tank – and preferably a gallon – 3.8L – because you can also use it to mix chemicals. Try stirring chemicals through the opening on a milk jug.
  • Has straight sides.
  • Has something to hold onto (like indentations) and is not slippery. Developer is basic (not acidic), and you will find that like soap, it makes everything it touches slick.

These do not need elaborate seals or even really to be airtight because you are not using these to store chemicals. Having lids is preferable

Kitchen-type funnel. You already have this, though I don’t recommend using it for food or drink thereafter. If you have a spare Paterson “cone” for a developing tank, that also makes a good funnel.

Drying rack. For rolls of 24 frames or 120 film, you might find that a rolling laundry rack with a “grid” style top shelf is very practical (if you already have one). You can clothespin the film to the grid, and use more clothespins to weight the film ends. Film does not curl as aggressively as it used to, so you don’t need weights.

If you don’t have a rack like this, your “top” can be made from a two-clip trouser hanger that you already have in your closet – and hung off whatever is convenient (overhead pipes, usually).

36 frames of film require a lot of space and long arms. This requires being hung from the ceiling.

Not critical.

There are several things you can dispense with:

  1. Squeegees. These come packed with some older developing sets. They can be used to dry film faster. They are also good at scratching film if you don’t keep them clean. With the right wetting agent and a not-too-dry environment, film dries on its own in about an hour anyway.
  2. Weighted film clips. Not really needed.
  3. Hose-type rinsing attachments. If you use hypo-clear, the wash time for 35mm is not very long anyway. Plus these attachments tend not to fit any modern faucet. The longer you run water, the more likely you will have a temperature transient that can ruin your film.
  4. Forced-air dryers. If you are a photojournalist in 1965, and you have to rush out that print for the rotogravure section. yes. Otherwise, they are space- and energy-intensive. And are actually frustratingly slow.
  5. Sous vide heaters. Much the rage for color, if your bent is black-and-white, you don’t need any artificial temperature control. I’m as much a fan as anyone of using kitchen tools, but you can leave this one alone.

Fadeout: Ilford Pan F Plus

If you’ve never wondered what it’s like to be at a stage of your life where you feel like you are just waiting to die, I recommend bulk-loading Ilford Pan F Plus and not using all of it before the end of summer. When the light gets poor, using up a roll of film this slow can be as excruciating as watching your grandmother shooting a single roll of 110 film over three Christmases.

Pan F Plus is described as “35mm, ISO 50, high contrast, super sharp black & white film with very fine grain. Ideal for studio photography and bright, natural light.” It has considerable charm and makes great pictures:

  • It includes fine grain and a ton of contrast, no matter what you use to develop it (HC-110 dilution B, however, has a very, very short development time).
  • It also makes it easy to shoot outdoor pictures with phenomenally shallow depth of field (witness above, a 50/1.4D AF Nikkor).
  • It holds overcast skies reasonably well.

It’s a classic b/w film, with a classic film speed. It is not a specialist film, as some might claim. It’s actually what a normal film would have been 50 to 70 years ago. It’s no Tech Pan. As a historical note, the Kodak closest product would have been Panatomic-X at a blistering 32 ASA, discontinued in 1987. Panatomic-X was also a general purpose film.

If you shoot medium format, an ISO 50 film can be something of a hair shirt, since it is difficult to get hand-holdable exposure with lenses that often have f/3.5, 4.5, or smaller apertures unless it’s a bright, sunny day. And sadly, most medium- and large-format lenses perform poorly wide-open. Shooting this with a medium-format SLR? Hope you have a sturdy tripod. Thirty-five millimeter, though, gives you fast lenses – which makes things more fun.

That said, the most curious – and soul-crushing – feature of Pan F Plus is its tendency to disappear. The impact of this image fragility is that you pretty much have to develop what you shoot, as soon as possible after you shoot it.

Although this keeps your photos current (by force!), you also find that it’s just as much work to develop one roll of film as eight. I asked Ilford for an explanation of why latent images fade so much faster than with any other film. My smartarse best-guess hypotheses were:

  • Somebody made a bad bet with the panchromatic doping back in 1992, and nobody bothered to change the formula to keep the image longer.
  • Kodak fans like to joke that Ilford makes the second-best product for any application, and Panatomic-X has left the room. Of course, the same Kodak fans like to needle poor old Tri-X, too.
  • Being owned by a pension fund (or venture capital company) means never having to say you’re sorry. Unfortunately, the income-generating pressures on both Kodak and Ilford have borne this out: some product has disappeared, and everything has become more expensive. Because shareholders.

The actual answer is (direct from Ilford staff – hooray for answering!):

a compromise with some other desirable characteristics. The basic formulation is probably the closest to the original of all our film emulsions even though it was updated several years ago. We have customers who are very attached to its particular curve shape and any emulsion redesign would inevitably change that so we are reluctant to touch it at the moment. However, we do review all our products and it is likely that at sometime in the future we will probably either update Pan F+ or replace it.

The note went on to explain that you should refrigerate the film after exposure to forestall this. Some of these points are expected (people liked the look…. refrigeration slows down chemical activity), and some are puzzling (it sounds like some Ilford formulas changed a lot). I like this answer. It means that one day, forgetting a roll or two of shot film will not spell disaster.

But you have to wonder: if I waited long enough, could I keep shooting the same roll of film over and over and over again, and only develop it when I had shot 36 frames I liked?

Of course, during a quarantine, anything passes the time.




Did we ever really understand film?

One of the coolest developments ever. But do we know what to do with it?

The word Columbusing has become a thing for describing the phenomenon by which a person believes that he is discovering something that in reality had always existed. It certainly seems possible that this is happening when people try to write reviews of cameras or films. I have now read hundreds of the film reviews in particular, and as an old-time Gen Xer, I realize that these writers are in a position to do one thing: demonstrate whether they as photographers can get a good image out of the material. The rest is of limited use.

Cachet qua cachet

Often, but not always a film review article will take this rough agenda. I think if you go back on my old site via the Wayback Machine, you may even find me doing this (though at the time I was writing about film, the cachet step wasn’t there, since almost all of today’s discontinued films were still sold then… In the early 2000s, when most of those pages were being written, film was just starting its tailspin.

Cachet signaling. This is the prelude. Usually consists of a description discussing how “those in the know” understand Film X (likely discontinued before the author ever picked up a camera, or in some cases was born), some information cobbled together from Google searches, and how the author came into possession of the now-expired film of unknown history, storage conditions, etc.

The low-sample test. Film X is frequently shot with a camera of significant vintage and unknown meter accuracy, sometimes used in conjunction with a meter of a certain age. Film is either commercially processed or done once, whether by the book, by guess, or by the Massive Film Development Chart (which can also be a crapshoot). Bonus points are awarded for random-guess compensations for the film’s age. Double secret bonus points if a restrainer is involved.

Abstraction to what the film is “about.” Author concludes that Film X is magical for xyz reason and that you should pay some scalper (or re-labeler) big time to get it.

Just stop here for a second. I am impressed at how good some of these writers are at photography. They have an eye. They can take a good picture and make a pleasing output. But nothing else they are doing is very instructive because their experience is not accurate or repeatable.

Call it a generational thing (or maybe half-generational) thing. As a group, Baby Boomers walked away from film photography and neither preserved nor transmitted decades of institutional knowledge on the subject. Most Gen X people know film as something you would shoot and take in to be processed. Even for them, unless they made pictures professionally or for a hobby, film photography became disposable as soon as digital became cheap. Which brings us to the millennial children of boomers: a knowledge discontinuity leads to satisfying feelings of discovery. But just as Columbus’ setting foot on Hispaniola did not mean a “new world” for peoples who were already there, superficial film reviews provide little (and really no) novel information.

Do b/w films really have looks?

But let’s back up to something in the cold light of day: with a few exceptions that came really late in the day, film was never really designed to have an aesthetic “look.” It was always designed to have a function. That drove aesthetics. To a point.

Almost 20 years into the 21st century, conventional black-and-white film has no real mysteries. For most of recorded history, film followed a pretty regimented set of tradeoffs: slower film had finer grain and finer tonal rendition. Things got grainier and lost dynamic range as film increased in speed. Although tablet grained b/w films helped increase performance, most of what you see in black and white films is the product of design tradeoffs rather than some deliberate aesthetic proposition.

Recall that the basis of film photography was science. I would suggest that, after a lot of time developing film, the differences between films of a given type and speed are actually relatively minor compared to the effects of varying developer, time, temperature, and agitation. Let’s take an example: Tri-X and TMY are different films, right, Tri-X with an S curve and TMY straight? Here is that classic Tri-X characteristic curve.

Ok, and here is your philistinic, “robot,” “soulless,” TMY, also developed in D-76:

Now develop both in T-Max developer and overlay the curves (black is TX, red is TMY). Don’t have a heart attack, but there are far more similarities than differences in response. Maybe a minute’s difference in developing time. Oh no…

But wow, this was like the holy of holy in differences in “look,” right?Nothing should be very surprising here; tablet-shaped film grains aside, the reaction of silver halide molecules to photons has not changed at all in 150 years of film photography.

So today, some films are grainier than others, some are contrastier than others, some are faster than others, normalized for a developer. But the choice and deployment of developer (if not also every other step of the output chain) can hugely influence or obliterate the “curve” which is the seat of the “look.” In other words, film is just a variable, and from a tone and grain standpoint, perhaps it’s far less of one than we thought.

Did consumers ever actually understand color film?

When you get to color film, things get more complicated because these start with silver halide, which is bleached out and functionally replaced with organic dyes. Color dyes are fickle.

When it was still made in a bunch of varieties, color negative film itself was somewhat inscrutable to anyone but pros and the very serious amateur. Moderately skilled (or more accurately, moderately informed) photographers knew that some types of film were better at skin tones than others (such as Kodak Vericolor III), but for the Joe Average, who had a skill level equivalent to most people writing about film, pretty much every C-41 negative film went through a minilab/printer, which was a highly automated way for drugstore personnel to make magic from your little canister and hopefully not destroy the negatives in the process. If you were a pro, you would send your film out to a pro lab where professionals would make magic from your little canisters of film and hopefully not destroy the negatives in the process.

Although competing brands of film within a certain type (color negative, color slide) used different methods of getting to the “right” color, skin tones were the pivot. Color, oddly, never really got more differentiated than high-contrast/saturation (Velvia, Portra VC, etc.) and regular (Provia, Ektachrome, Portra NC…).

Did you ever notice how much people hate on Kodak ProImage 100 for being excessively grainy and undersaturated? Aside from slight desaturation, it’s essentially where 100-speed film was when people stopped putting money into developing 100-speed consumer color film. The point-and-shoot camera – typically with a slow lens – put a high premium on 400-speed performance, and that’s where manufacturers went. The faster film got to the point where Kodak HD200 and 400 were far smoother than good old GA-135. Here is an easy conversion from consumer to prosumer to pro:

  • Gold 100 gen 4 » Extinct » ProImage 100 (rebalanced)
  • Gold 200 gen X » ColorPlus
  • Gold 400 gen 6 » some other steps » Gold Max 400
  • Ektar 125 » Ektar 100 » Royal Gold 100 » Extinct » Ektar 100
  • Royal Gold 200 » Kodak HD200 » Extinct
  • Ektar 400 » Royal Gold 400 » Kodak HD400 » Extinct
  • Vericolor III » Portra 160NC » New Portra 160
  • Portra 160VC » Replaced by New Portra 160
  • Portra 400NC » New Portra 400
  • Portra 400VC » Replaced by New Portra 400
  • Portra 400UC » Extinct

Slide film might have been even more mysterious — and represented a medium that spanned the absolute best professional photography and the worst amateur work feared by man. And nothing in between. You either had it or you didn’t. Transparency film was sold in large quantities to tourists and people wanting to shoot color in the really old days. Which made a lot of sense when a goddamn color photograph was a big deal, even if it took 6/12/36 exposures to get one good one. Kodachrome was a tri-layer black and white film that got an infusion of dye during processing. Slow, sharp, permanent, and capable of delivering a nice looking picture assuming the constellations were lined up. And if they weren’t, blown highlights, blocked shadows, and blue. Slides were the ultimate measure-twice, cut-once medium — but few people bothered to measure. Ektachrome and Fujichrome made it cheaper and easier to generate huge boxes of vacation slides that no one wanted to see — and ultimately faded out transparencies that no one could see.

Today, unless you plan to look at tiny positives backlit by homemade ground glass after the Zombie Apocalypse, or have brought some friends over, Buffalo Bill style, to watch vacation pictures projected on a screen (“it puts the slides in the carousel”), digital photography does everything slide film did – but better. Where you can vary the ISO, get more dynamic range, infinitely adjust contrast and saturation, and crop at will, it’s hard to make the argument that Ektachrome came back for anything but nostalgia and motion pictures. Which is a worthy reason. Let’s just not pretend it’s scientific.

In addition to allowing things to happen that could never happen with a filter-based minilab, the rise of the Fuji Frontier in the late 1990s was really the nail in the coffin of film-awareness. With hyper-sharpening, dynamic range compression, and ultimately, smart automatic operation, the Frontier made every photo look perfect. The technology is not unlike how people deal with negatives today: develop, scan, print (in the case of the Frontier, onto photo paper, using a laser). Today, the Frontier’s weirdly regimented view of the world lives on in the hackneyed wedding presets used on Lightroom by an army of semiprofessional shooters using Canon 5Ds.

And if you remember old film packaging, there is the warning that “color dyes in time may fade” (Gospel of Eastman Kodak, K41:1). Everything on earth is capable of influencing the colors and balance of color films: lot, storage temperature, age, exposure, environmental radiation, magnetic fluids, and phlogiston. The same goes for the output media, which if you’ve seen old Fujichrome slides, can be interesting.

That’s part of why the support infrastructure was so complicated, whether it was a minilab computer or CC10, 20, and 30 filters in cyan, magenta, and yellow. And why pros – once they had a particular lot of film dialed in – like a particular lot of Ektachrome – they stayed with it as much as possible. And even pros sometimes had to lean on color correction experts at labs to make every one of those Glamour Shots® perfect.


Hopefully you have not found this discussion offensive, but as an almost old person, I am not at all hesitant to tell you that everyone in their 20s has a Dunning-Kruger delusion when it comes to the technical aspects of photography. As someone who was there for the twilight of mainstream film photography, I would mostly observe that until the bitter end, film R&D was aimed at making the medium a neutral one that could be manipulated via development, printing, or even scanning – and that today, you can easily mistake random errors for some intentional aesthetic balance.

Punching your way into film identification

So the usual has happened. You have a pile of undeveloped film. Maybe you didn’t note the processing (N, N+1, N+2) or maybe it’s bulk loaded film that has no label on the cassette (for example, you might find it very easy to confuse Ilford Pan F Plus 50 with Ultrafine Xtreme 400). Or you can’t remember what order you shot film. Of course, the difficulty is that unless you somehow identify the film canisters, you’ll mix things up. And even then, once film is out of the canister and developed, there is rarely a persistent indicator of what happened. Data backs for 35mm cameras are something of a pain, they don’t record everything, and almost all of them are going extinct in 2018. Buy a Nikon F6 that records exif data? It’s a little late in the game for that.

The solution: the $5 arts & crafts hole punch and a $5 film-leader puller

One perhaps non-obvious solution is to permanently mark the film leader. You obviously can’t do this with a pen because the writeable part of the film will get washed off in processing.

The most effective way I have found to achieve this is with craft hole punches, which come in various hole sizes (1/16, 1/8, and 1/4″ – 1.5mm, 3mm, or 6mm), as well as a variety of shapes (round, hearts, stars, diamonds). As long as you make the marks on a part of the leader that will not be discarded (so not the long thin tongue part on commercially loaded film), these will survive the development process and won’t go anywhere until you snip them off. The uses are numerous:

— Bulk-loaded film: If you punch the leaders with a distinctive mark, you can avoid mistaking one type of film for another. For example, where it is very easy to confuse bulk-loaded Ultrafine Xtreme 400 and Ilford Pan F Plus, punching the Ultrafine with a heart will help you avoid mixing things up when loading your camera.

— Processing regime: If you are going to push-process film, punching the leader with a mark (such as a star) either before or after exposure will help prevent you from mixing up your N, N+1, and N+2 films. If you need to, you can use a leader-retriever to pull the leader out and mark it after fully rewinding.

— Order the film is shot: If you can’t imprint the first frame of a roll with a data back, you can use a number of punches to signify the order in which the roll is shot. You can even do this before you shoot the film.

— Camera or lens used: no data back records focal length, and camera bodies of the same make – assuming they even have a film-gate cutout for identification – use the same cutout (for example, Konica bodies usually have a triangle notched into the edge of each frame).

# # # # #