Leica M: that distinct feeling of ennui

Smithers: “They’re fighting like Iran and Iraq!”
Mr. Burns: “What?!”
Smithers: “Persia and Mesopotamia.”

[Written April 16, 2012] All over the world, there are provincial towns believed by their residents to be equal to New York City, Tokyo, or Paris. In a way, Leica M might be such a town. Leica (the company) is not so myopic in terms of technology, but for whatever reason, digital M arguably has become both a technological and a cultural backwater. As Carlo Levi would have put it, Cristo si è fermato a Solms.

The duality of Leica
As this author has observed it over a 15-year period, M culture is basically drawn from two groups (a) people who put up with Leica’s quirks and price due to a belief (often justified) that the resulting image quality is better and (b) a group of photographers cool to modern technology and suspicious of the idea that in spending tens of thousands of dollars on a system, someone might want features that make an M look more like a practical “only” camera. We can call the first group the Opportunists and the second group the True Believers.

Surmising what you can surmise about them, the Opportunists are fairly mobile between camera systems. In fact, given Leica’s cyclical appeal, this group largely abandoned Leica’s system in the early 1970s and abandoned it again when Leica was dragging on a digital body in the early 2000s (recall how lens prices fell back then). Despite claims that demand for M9 cameras and lenses outstrips the ability to produce them, production is small – and even so, the market price for used M9s has now drifted to 60% of new prices. Even new cameras are being discounted by designation as “demos” (no camera that was really used as a demo has five or fewer exposures on it). We know from this that there are definitely fair-weather fans and that they are starting to head for the doors again. When things change precipitously, we know the Opportunists are on the march. And some Opportunists march by keeping their M8s and simply supplementing their missing capabilities with D700s and X100s. The effect, however, is the same – that they stop buying brand L and begin experiencing the forbidden fruits of other manufacturers.

The True Believers – a smaller group but more influential with Leica’s management – hold that the world stopped producing useful new camera features in about 1986 (or, alternatively, in 2002 with the M7). For that reason, they believe, Leica M must be locked into a world of vestigial and functionally-useless removable baseplates, frameline preview levers, and ergonomics lazily whittled from a bar of Ivory soap. The True Believers deny that any feature a Leica M currently lacks is significant, desirable, or valid. Their faith is strong despite the fact that Leica itself has proven them wrong by introducing the very things True Believers claimed were nonessential to the M system: film backs that opened, lever winding, combined rangefinder/viewfinders, TTL metering, electronic shutters/autoexposure, TTL flash, and ultimately, digial imaging. For this group, the M9 – which emerged years behind technologically – is “enough.” In fact, it is already too much (one dares not speak of the D-Lux, the Digilux, the S1, the S2, or the DMR – all of which were actually cutting edge when released). [One would note that since this article was written, that this faction won and got the M10 into production, omitting some features that had been included in the intervening M typ 240/246.

When things run their commercial course, we can call them effectively obsolescent. Obviously, nothing actually stops taking pictures (or anything else) when it is superseded by newer, flashier products – or even products with better specs. But new products often do the same thing with more speed, better efficiency, or fewer avoidable annoyances. The world is littered with well-built, well-designed items that should have lasted forever in the market but were passed up by things that were simpler, cheaper, or more appealing to the masses. Fountain pens, for example, a durable, perfected designs that are largely ignored for cheaper, less messy Bic Biro ballpoints.

When it comes to cameras (or anything), this author would take it a step further and point out that that is not fair to judge an older product for lacking features that had not been invented when it came out (and this is being charitable where Leica did not, for whatever reason, implement technology that was available at the time). So talking about digital M, let’s leave aside things like live view and video. Let’s even forget about DSP speed, screen density, and frame rate. But it is fair to compare apples to apples: to take the core features (or selling points) of an old product and examine their uniqueness in the marketplace and whether they are necessary or desirable solutions to problems.

The five points of Leicas

Leica cameras have five big selling points: high sensor quality; high lens quality, a great synergism between the two, a superb optical viewfinder and a superlative mechanical rangefinder. Take them in turn:

1. Sensor image quality.

Image quality is really the reason why serious photographers buy Leicas. The Leica magic (at least at the body level) comes from two things: (1) lack of an antialiasing filter, which gives a perception of an additional 25% in resolving power (or the ability to up-res by a like amount) and (2) image processing algorithms that build a unique look. These huge determinants of quality do not depend on the overall build quality of the camera body; they reside entirely in a CCD sensor and a couple of hundreds dollars in electronic parts. As long as the same glass formula were put in front of this sensor, the end result would be identical, even if the body were ABS plastic and even if the lenses operated by autofocus.

A lot of things have happened in the 7 years since the basic digital M technology arrived. First, other manufacturers have caught up to the filter-free sensor (Kodak actually preceded Leica with many models in which the AA filter was absent or removable). Sigma has the Foveon sensor, which omits it. Fuji has the X-Trans CMOS sensor – which in addition to lacking an AA sensor, has a randomized color pattern that obviates the anti-moire processing that bogs down Leica’s cameras. Nikon put a weak filter in the D3 and D700, and the D800E effectively has none (as well as twice the pixel density and much better low-light performance than current Leica sensors). Ricoh is making GXR modules that take Leica lenses and have no AA filters. And the Leica “look,” while challenging to replicate, can indeed be achieved in relatively cheap software like Lightroom.

But backing up a little, the world has also moved away from CCD in favor of CMOS chips for lower power consumption, higher sensitivity, and live view capability. Sticking with CCDs constrains Leica’s sensor choices for any future digital M (unless Leica changes the imager completely) and puts Leicas at a long-running disadvantage in higher ISO performance. CCD chips do have great color, but so do a lot of CMOS chips. In the end analysis, slipping behind the sensor speed curve is a big issue; the number of megapixels, not so much.

2. Lens image quality.

Leica was an early participant in the Lens Speed Wars that started in the 1920s and 1930s. Back then, you needed superspeed lenses because film was rated at a blistering ISO 12. And let’s be clear here: from about the 1960s onward, Leica was pretty much unchallenged in terms of lenses, in the build, quality control and resolving departments (and in many ways still is). But a few funny things happened on the way to the 21st century.

When the world went digital and addressed low-light situations by upping sensor capabilities, Leica instead focused on simply making faster lenses. Although this technically gets to a correct exposure in a lot of situations without upping sensor performance, it also locks users into what could be called the “Noctilux Aesthetic,” shorthand for pictures where there is a razor-thin plane of focus and often heavy shading of the corners. Some people prefer to do things with higher ISO sensitivity (rather than wider apertures) so as to have more things in focus. And if it’s the aesthetic that appeals, there is always Instagram.

Leica’s drive to make faster lenses made lenses for a compact system heavy, large, and insanely expensive (a 24mm f/1.4 Summilux, for example, costs $7,000). An M9-P and a 24/1.4 will run you approximately $14,000. A D800E with a 24/1.4 Nikkor runs about $5,500 – and can either shoot in a quarter of the light with the same noise or the same light with four times the depth of field. Sometimes it is nice to have the luxury of choosing the method of taking low-light pictures. Although the expense is typically met with the refrain of, “it’s expensive because it’s good,” or “it’s not for everyone,” it is worth pointing out that many of the nouveau riche who buy things like Leicas did not get there by spending money just to spend money- cost/utility analyses go on all the time (albeit among much more expensive products). In units produced annually, Leica M9 production is about equal to the M6 – though the number of eligible buyers in the world has increased radically. Leica’s sales are up in China, but with flat overall volume, that means that they are diminishing in other parts of the world.

Leica M lenses have very limited options for addressing focus shift [with the exception of partial corrections like the 35mm f/1.4 Summilux-M FLE]. All lenses exhibit focus shift when stopped down, and this can make rangefinder focusing more inaccurate than it should be. Digital has less tolerance for error, and the only ways to mitigate focus shift in fast lenses is to use floating elements and aspherics, both of which – when executed to Leica standards – cost a mint. Closed-loop focusing (in the guise of contrast-detection AF) allows things like the $600 35/1.4 Fuji X lens (for the X-Pro1) to perform comparably to the $3,500 35 Summilux ASPH. But even before that, the lowly Hexar AF was able to keep up with the legendary 35mm Summicron ASPH by adjusting its focus to account for the selected aperture.

Leica’s 20th-century lenses hold the digital M system back. Users often fixate on speed, but older, high-speed lenses are not world beaters (though many people pay those types of prices for them). The 75mm Summilux command prices that are more driven by rarity than its relatively humdrum performance on a flat sensor (or the somewhat provincial appeal of shooting a portrait with just the eyelashes in focus). Even some of Leica’s more innovative designs like the 28-50-35 Tri-Elmar are fairly unremarkable performers on a Leica digital. The standards required to make a good digital lens are far more exacting than what made superlative film lenses in the past. There are always third-party lenses, but sometimes it seems silly to attach a $300 lens to a $7,000 body.
None of these are show-stoppers, but they tend to paint Leica M into the corner of being a very specific solution to any given problem. And getting to the place where a Leica M optically outperforms the competition requires very expensive gear.

3. The synergy.

One thing about Leica M was that for a long time, you had to use a Leica body to get the Leica M lenses. This was due in part to patents on the lens mount. Even where other manufacturers made M-mount cameras (like the Minolta CLE, Hexar RF, Bessa R, Zeiss-Ikons, and Rolleis), Leica always had a little bit of an edge due to its huge and wide pressure plate. Today, though, the entire synergistic advantage of using a Leica lens with a Leica body lies in the microlens pattern on the Leica sensor glass. It is not a perfect solution, but it is currently the only way to get the Leica resolution all across the board – and on a 24x36mm sensor. All of that said, the synergy between Leica lenses and bodies really only matters if you assume a Leica M lens to be an essential part of the equation. Where other cameras are built as a cohesive unit (lens and sensor), the 80/20 rule kicks in (80% of the performance at 20% of the price). Only here, Leica’s pricing now pushes that toward a 90/10 proposition.

4. The optical viewfinder.

One of the big points of excitement about the Leica M is its big, clear viewfinder. Though Leica fields the brightest and least-distorted finders in the industry, those finders are expensive to produce and, given the mechanical nature of the framelines, are incapable of showing accurate framing except at one arbitrary distance. This tends to make shots frame looser than they should be, thereby wasting real estate on the sensor. Japanese manufacturers have not surpassed the Leica clarity, but they have managed to produce close equivalents for much less money. But the bigger issue came with the rise of hybrid viewfinders that use LED overlay displays to (a) show instant playback; (b) project a digital level and composition gridlines; (c) display a computation of the depth of field based on focal length, aperture, and focused distance; and (d) show field-corrected framelines appropriate to any focal length. This is to say nothing of allowing an instant TTL lens view as well. These features – which can universally be shut off – add a considerable amount of utility for people who want them. They don’t take away from the beauty of the Leica version, but one line of 8-segment LEDs provides no warning about running through an SD card or a battery, two conditions that did not really exist when the viewfinder was last redesigned, 10 years ago. In the end, the major compelling feature of that Leica view is…

5. The rangefinder

Part of what makes the Leica M is the rangefinder. Leica Ms will always have rangefinders, because the “M” actually stands for Messsucher (rangefinder). When the Leica II was developed, there were no small SLRs. Leica and Zeiss based their competing 35mm cameras on coupled prism rangefinders. This was, at the time, the only technology that allowed a compact camera to focus accurately, particularly with high-speed lenses.

Even when 35mm SLRs came into the mainstream in the 1950s and 1960s, rangefinders persisted. Rangefinders were smaller in general, and it was easier to make wide-angle lenses for them. Back then – and now – rangefinders also did a better job of focusing those wide-angle lenses. Where a rangefinder system has a constant magnification and starts running into problems with longer lenses, SLRs benefit from assuming the magnification of telephoto lenses they use.

Many competitors have made runs at matching the Leica rangefinder, and the common vendor to Fuji, Mamiya, and Konica almost managed to do it. The Leica mechanism is a wonder of precision and high-end manufacturing. Today, though, it seems like a precisely engineered, laser-engraved, CNC machined, hand-honed … typewriter. The rangefinder’s competence is in focusing wideangle-to-normal lenses – but run-of-the-mill autofocus is just as good at doing that.

The weight

Aside from struggles with relevance to Opportunists at a core technology level – i.e., creeping effective obsolescence – Leica M carries a lot of baggage. The weight (all apologies to Rick Danko and Robbie Robertson) goes beyond simulating the size and weight of a camera of 1953 (the weight is, in fact, simulated – the brass covers of a digital M account for almost 25% of ite weight). It goes beyond doing things they way they have always been done – in the name of tradition. It goes beyond being accosted in public by weirdos who recognize your M8 as “an M4.” To this author, the most perfidious part of it is the cognitive dissonance that arises when one carries $10,000 in gear around his neck but fancies himself to be a photographic Zen Buddhist.

Leica used to think outside the box – not only did it popularize 35mm film photography, it also invented things like phase-detect AF, made innovative cameras like the M3, and otherwise kept up with the world (even Leica’s current S2 is technological light-years ahead of the M). Had this progressive philosophy carried over into the M series (or an updated successor), the M8/M9 would not have slavishly copied film cameras in looks, live view would have been added to stand in for the Visoflex, and it would have been Leica to introduce hybrid viewfinders. Maybe this will change on May 10, 2012 with some huge product announcement [it did not, but the M typ 240 did introduce the use of electronic viewfinders – EVFs – to Leicas].

But in our hearts, we know it won’t. The world of Leica is somewhat frustrating. The products are high quality, the resulting images are excellent, and the general solidity of the system makes all of us keep our lenses as we repetitively upgrade digital bodies (and upgraded film bodies before that). We always want to think that some vastly improved new M is around the corner, yet ultimately, we just end up settling for something that is behind the curve, for a lot of money. One could get the sense – reinforced by the rapid pace of the rest of the photographic world – that this bubble of IR filters, color vingetting, bottom-plate loading, and black paint is going to burst.When you look at things like the Fuji X-Pro1, you begin to think that perhaps it already has. Maybe the better thing would be for Leica to declare victory in 2013 after 60 years of M – after all, it outlasted Contax, Alpa, and everyone elese’s film rangefinders (and even outlasted Polaroid, Kodak, Agfa, and Ilford…) – and reboot with something as earthshaking as the M3 was in 1953.

Disclosure: the author has been a Leica user for the better part of two decades and was an early adopter of the M8 [and M240, and M246].

Advertisements

Konica Hexar (AF)

hexar-af

This is the text of the page that had its debut in 2001 and (for better or worse) helped trigger Hexar-mania. Last update was late February 2018.

Overview: (Scratching off where there was grime)..”H-E-X-A-R.” Captain, HXR is a Canonet that was sent out of our solar system in the late 1960s. It encountered a machine planet where the computers examined it, understood its mission, and elaborated on its mechanics. It grew, and it evolved… and gained consciousness.

Generalities: Autofocus camera with high-speed 35mm f/2 lens and leaf shutter. Form factor is similar to a Leica M.

History: the Hexar came about in 1992, reportedly a last vanity project for the Konica engineers who worked on the FT-1. Or so the story goes. Some of the key technologies on the Hexar, such as a sealed lens barrel, projected brightline finder (zoom on some models, albeit always with fixed framelines), and tri-window AF showed up first on the 1988 models MR640 (weather resistant) and shock-resistant Genba Kantoku (“Site Supervisor”), a ruggedized camera designed for construction sites. In fact, the wind motor of the Genba K. sounds like the Hexar in “loud” mode.

genban

Do you also see a resemblance to the Fuji GA645 with the autofocusing side-pod module?

pht_large_1988

Tokina’s site, oddly, was the only one that had a picture of a clean GK. Most examples of this camera, including mine, look like holy hell. This is the fixed 40mm version, which has a shallower silver protrusion.

Before you confuse the Genba K. with a poor man’s Hexar, understand that the lens and operation are totally different; the Genba Kantoku has a 40/3.5 (3 elements, 3 groups) or 40/3.5-60/5.2 bifocal lens (3/3 and 6/6) of completely different construction. And on the Genba Kantoku, here are your controls. All of them: flash on. Flash off. Self-timer. Manual rewind. No nonsense here.

Later models of the Genba Kantoku (the 28mm and 35mm second-generation models in 1994) apparently acquired the Hexar’s funky electronic shutter and accordingly had maximum shutter speeds of 1/280 sec.

Construction. The construction is all metal, with the exception of the top and bottom covers, which are a period-typical black chrome (or bright chrome) plated on polycarbonate. Which is a good thing because if they were brass covers, this would be a very heavy camera. Konica made a big deal about the front barrel being a heavy alloy casting to add the retention of precision in focusing.

Lens. The lens is the Hexar’s raîson d’etre. In fact, it is legendary.

The 35mm f/2 Hexar (actually, Hexanon) lens has the imaging qualities of the 35/2 Leica Summicon-M and the general design of the Nikon 3.5cm f/1.8 W-Nikkor (the rangefinder lens from the 1950s and 60s – you know, the one whose Leica screwmount version sells for $1,800 and up today). Konica won’t go further than to call the design “Gaussian,” but Nikon has acknowledged on its 1001 Nights Site that this is a Nikkor derivative. Konica’s own technical materials reflect this design intent, although they also mention a slight recomputation aimed at allowing an electronically controlled aperture and shutter to be inserted between the lens groups. The aperture has 6 blades that form a perfect circle down to f/5.6, after which point, aperture shape is not that important.

This lens has been revised slightly and rereleased as the 35/2L Hexanon (chrome) and its optical twin, the 35/2 UC Hexanon (black paint), both in Leica mount. These are beautiful lenses run in limited numbers (1,000 and 2,000 respectively).

The lens out of the original Hexar AF has been independently converted by many into a Leica M lens (though this takes a lot of work and frankly is not as elegant as Konica’s own ported versions). But it is a lot cheaper way to do it.

hexar-lens.jpeg

This camera featured in a Konica white paper that discussed the camera’s total control of chromatic aberration. It also posts some impressive MTF compared to the lenses whose formula and optics it replicates. Wide-open, it exhibits a very smooth falloff from the center; at f/5.6 it is uniformly great.

hexar-mtf

Viewfinder: The viewfinder is a 0.7x window, with crosshair reticle for 2-channel infrared autofocusing, green light for focus confirmation, focused-distance indicator, shrinking-field, parallax-corrected projected framelines, and +/- indicators for over/underexposure. The front and back covers are glass, which is good for durability.

Rangefinder and limitations:  It is probably not a stretch to say that this camera has the most sophisticated active autofocusing system ever put in a camera.  The heart of the system is a unique 2-channel infrared rangefinding system that gauges distance in 290 steps out to about 10m.  It uses a central emitter and two receptors to help eliminate errors caused by parallax or subject reflectivity.  If the camera fails to see a return IR beam, it focuses to 20m, which is the hyperfocal distance of its 35mm f/2 lens.

3-point AF.jpeg

That is already insanely good, but the camera then applies an aperture-specific focus correction to account for focus shift (also described in a Konica white paper). The Hexar’s lens is optimized for wide-open operation; its spherical aberration causes the focus point to shift as the apertures get smaller.  The Hexar calculates this error and corrects as its goes.  Too bad AF SLRs don’t have this feature.

But wait.  This camera also can automatically compensate for 750nm or 850nm infrared film, too.  No IR marks, no guesswork.

And for the free set of steak knives, the camera’s AF system is temperature-calibrated as well.

If you need true infinity focus, you hit the MF button once. If you hold it down, you can set your distance manually (and the camera remembers every time you come back – useful for hyperfocal technique).

Nice design features: Programming, programming, programming. This camera is built around a first-rate lens and two key concepts. One is hyperfocal focusing. The other is perfect balancing of flash using a combination of techniques, including traditional distance-aperture programming, rear-curtain synch, and stopping-down mid-exposure. It is important to note that the Hexar cannot use high-voltage flash units like the early Vivitar 283. Only modern, low-synch-voltage units should be used to avoid frying the internal circuitry.

137_18A

The black model features a silent drive that slows focusing and advance to the point of being absolutely silent. Even in that mode, it still focuses and advances faster than you can. In fact, this camera can focus, compute exposure, and control flash in complete darkness. Instantly. You can add silent mode and a number of other advanced features to the Hexar Silver, etc. through a control sequence that you can find on the ‘net.

00020_n_8abnla5vt1167

Odd design limitations: 1/250 second top speed. Not that odd, really, if you consider the clear aperture those shutter blades have to cross and the fact that electronically-controlled shutters have different design limitations. Did you really think your Canonet QL17 shoots 1/500 at a true 1/500? Didn’t think so. Some people complain that you can’t use 800 ASA film with this camera outside. That misses the point, which is that you use lower-speed film to take advantage of the lens’s resolving power. Even 400-speed film is pefectly adequate, as in the big picture below (Kodak Supra 400). There is no cable or remote release, but I am not sure if this is a problem in a camera without a mirror to cause vibration. It does have a self-timer.

  • For the complainers about the top shutter speed, the workarounds should be fairly obvious: for outside shots (or inside with flash) get an ND8 filter, which takes a 3200-speed film down to 400. You will have to make sure that you change the ISO setting.
  • Another way is to just change films mid-roll, which is easy on this camera. When the camera reaches the end of the roll (which takes a lot longer than you think), it rewinds the film. Or you can use a ballpoint to press the manual rewind button. When the leader is about to be sucked into the canister, the camera pauses for 3 seconds, displaying [–]. This is your cue to open the back and take the leader-out cartridge. Otherwise, it finishes rewinding and displays [0]. The film advance is precise enough that the camera can be shot with one roll of film, rewound, loaded with another type, switched back to the first, and advanced (lens cap on) to the same spot on the first film (hence the leader-out). Go two frames past where you left off (you can actually do one).

In Operation: With a very short learning curve, this camera is a snap. Ergonomics are identical to an M6 with a grip. On P, you set it to your preferred aperture and it stays as close as it can without blowing your lowest hand-holdable shutter speed. Metering is dead-on, and the whole thing is so quiet most people think it’s digital — or ask when you are going to take the picture (although you already had). The shutter is completely vibration-free. Flash operation is perfect every time, even more accurate than TTL, because it is not thrown by subject reflectivity.

01667_n_8abnla5vt701.jpg

Balance/feel: This camera balances really well and feels really solid, which is all you really need. The wheel that controls the aperture is on the top, and accessible by your right forefinger. It feels… good. It could use textured grips, but it’s not a big deal.

Durability: It’s a tank. Well, two (major) incidents. First was pulling the camera off my desk. Camera hit two drawer handles, put a nick in the floor. No damage. Christmas — got really loaded at the family party and dropped camera in the snow on the way back into the house. My sister came in the next day with the camera frozen in a sheet of ice. I chipped the ice off and very thoroughly dried it. No damage – and no fungus or haze 7 years later. It took the picture above after all of this! Because you have the luxury of a 46mm filter size with this camera, I strongly recommend screwing a B+W KR1.5 into the lens and leaving it there. When you have a filter screwed in, the lens barrel becomes almost completely air- and water-tight (all movement is within). As you can see above, it does not degrade lens performance to do so.

Long-term issues: Note that the 2-position shutter switch (focus… shoot) is rated for about 30,000 cycles – and it will eventually wear out. If you started with a new camera today, you would never physically be able to hit this limit. But since the oldest Hexars are now almost 25 years old, watch for this. The symptom is that the focus does not lock when you push the button halfway down in “loud” mode – and it becomes a problem for off-center subjects. To some extent, cleaning the switch can help, but the ultimate fix is to replace the dome switch with a similar DSLR part, which will set you back $100-150. But once you have that done, it seems unlikely that you will wear out the next switch.

Accessories: Hexars are no different to accessorize than any other compact, fixed-lens camera. But here are some suggestions:

  • Flash: HX-14 flash is the default choice. Not much flexibility, insecure mounting, no thyristor. Very tightly integrated with the camera and can automatically activate flashmatic mode. A Nikon SB-20 is a more powerful, more flexible option, but you need to set the PFL mode. Recently, I have had great success with the Nikon SB-30, which is small, power-efficient, flexible,
  • Filters: I would recommend a B+W MRC nano. Thin and repels everything.
  • Case: avoid the soft case.
  • Strap: get a wrist strap or a very thin neck strap. I would think about a Peak Designs modular strap that can exchange for a wrist strap or a neck strap.

Bottom Line: I think the ultimate test of the best all-around camera is what you would grab if told that you were leaving on an around-the-world trip and you had five minutes to pack. This would be mine.

 

 

 

Maximizing your Nikon FH-869S

fh869s

Is there a problem here?

Nikon packages terrible directions with the standard medium format holder for its high-end scanners.  Rather than going crazy with your FH-869S and pining for an FH-869G glass carrier,* let me suggest the following to maximize the usefulness of the medium-format (“Brownie”) carrier that came with your Nikon LS-8000ED or LS-9000ED.

*  There is nothing wrong with a glass carrier except dust, inconvenience, skewed negatives, expense, rarity, and a tiny amount of overall resolution loss from the antinewton glass.  For some negatives (panoramic, warped, etc.), they are indispensable.

A better way to use your glassless holder:

1.  Make sure the rubber grip strips are clean.  This is crucial – and probably responsible for most of the complaining about the standard carrier.  Clean them with a cotton swab and the alcohol that comes with a cassette tape cleaning kit (or Radio Shack “Non-Slip Fluid,” 44-1013).  DO NOT touch the strips with your fingers afterward.  Even your skin oil can make them too slick to work.

2.  Turn the carrier so that the open-close slider is on the bottom and the end that enters the scanner is on the left side (see the picture at the top).  This is going to establish the orientation that you will need for the rest of these directions.

3.  Use your forefingers to open the gripper latch at the top.   Position the film so that it “corners into” the end of the carrier with the two prongs and the film channel at the top.  The end of the filmstrip should be fully supported.  Now push the negative strip up toward the ridge at the top of the channel underneath the gripper latch.  Get it as even as you can (and it should be possible to get it very, very even).  Snap the latch down.

4.  Make sure that the open-close slider at the bottom (the one with the “Pac Man” symbol) is in the rightward (“open”) position.  Open the bottom gripper latch.  Slide the bottom gripper assembly upward until the film edge uniformly contacts the ridge.   Be aware that the gripper assembly can be rotated slightly around the open-close slider.  You will probably not be able to get it perfect, but the beauty is that you don’t have to.  When you have it as close as you can, snap down the film latch.

5.  Now gently pull the bottom gripper toward you.  Note again that it still pivots around the open-close slider.  Get it tight and pivot it until the entire film is flat.  This gives you a last chance to make sure that the film is evenly tensioned.

6.  While holding the gripper assembly in position, use the last couple of fingers of your strong hand to push the slider left, to the closed position, to lock things down.

7.  Run over the film with a rocket blower.

8.  Scan.

9.  Stop complaining about this carrier.

The curious case of the Minolta AF-C

af-c

A Minolta AF-C landed on my doorstep today. It’s a tiny little thing, no bigger than a Contax T, which is one of the smallest 35mm cameras ever made. Why does the f/2.8 lens have so many elements (6) for a compact? How do they run an AF system off four button batteries? How did they get this thing so small?

Brilliant engineering.

The thumb wheel film advance also cranks the lens backward toward infinity, against a spring. Even then, it looks like only the rear group moves. Releasing the shutter lets the lens jump forward to the position selected by the active AF. Then when you wind to the next frame, the lens returns to its “ready” position. It’s a lot like how cameras like the Konica Autoreflex T could run AE off two 675 cells – all of the mechanical work is done by springs, regulated at a place where a tiny amount of mechanical leverage can arrest great forces.

Toshiba FlashAir W-04 vs Eyefi Mobi Pro

sdcards

Life has many existential questions and then some simple annoyances: why is the built-in WiFi in so many cameras so terrible? My Sony a6300 requires QR codes, wireless connections, and clunky built-in applications (as well has having the even more kludgy Sony PlayMemories application on the receiving device). Sometimes the simplest solution is not proprietary, and that is where we come to wireless SD (actually SDXC) cards.

Eyefi

Eyefi was a Finnish company that pioneered the idea of the wifi-enabled SD card. The idea was to make a small card that had a short-range 802.11 connection that could interface to a computer. Before long, the focus became transmitting to handheld devices.

In theory, all wireless cards count on the tolerance of a camera for staying powered up until disk operations are finished. In practical terms, this means that the wifi component in the card is activated by reading or writing a certain amount of data to the card, and the camera does not go to sleep until the transmission is complete (or some number of minutes passes, and the camera says “enough is enough!”).

Eyefi was not a tremendously easy system to set up on a handheld because it installs a WiFi profile (ID and password). This required you to enter a code on the back of the box into the handheld application, have your phone install the profile, go to WiFi settings, connect to the Eyefi card (assuming it is powered on) and then activate the Eyefi Mobi application.

From there, and assuming you were out in the wild, and your handheld could not see any other networks to which it could auto-connect, it would automatically connect to the Eyefi card. You would have to launch the Eyefi app to get transfers to start.

In general, the Eyefi setup worked (and works), except for a few caveats:

  • It is difficult to reconfigure the cards for a new device if you lose the activation code, and it is not straightforward to recover them (you used to have to email Eyefi customer service).
  • The configuration on the pro cards (transmit raw files and video or neither) required work with the hellishly ungainly Eyefi desktop application, which was a solution looking for a problem (if you are at your computer, why would you need to wirelessly transmit data to it?)
  • Eyefi cards were (and are) pretty hard on camera batteries.
  • Eyefi cards never got fast enough for intolerant cameras like Leica Digital Ms, especially the Typ 240 and its siblings, which really don’t like cards that can’t do at least 60mb/sec write speed (which generally means a 90mb/sec read speed – what they show on the box as the “speed”).

The Eyefi Mobi and Mobi Pro cards were a bit easier. The orange Mobi only transmits JPGs (you need to plug it into an SD reader to get RAW), and the black Mobi Pro would transmit both. But the speed still maxed out at Class 10, still not fast enough for a Leica, where sometimes they work, sometimes they don’t, and when they don’t, they lock up the camera until you remove the battery.

Eyefi’s reorg, Toshiba, and Keenai

The Eyefi situation, oddly, changed for the better with the reorganization of the company. The technology end (the patents) went to Toshiba. Keenai took over the software end and designed a (free) mobile application that far more reliably connected to the card and downloaded pictures far faster. While on paper, the deal between the companies was cross-licensing, the reality is that Eyefi cards are out of print.

Toshiba

Toshiba took over with its FlashAir series where Eyefi left off. True to Japanese corporate form, it put out its own clunky (and frankly indecipherable) handheld application. FlashAir. To its credit, the application allows you to see thumbnails (JPG and pink boxes for RAW) that allow you to selectively pull (as opposed to having the card push) files. This avoids the usual wait for the good shots while the card pushes all of your bloopers to your handheld.

The FlashAir W-04 (the current model, for some reason only available in Asia – in the U.S., you get the W-03 – but you can buy the W-04 all day on Ebay…) is in many ways better than the Eyefi Mobi Pro.

First, it skips the activation codes and profiles and lets you just punch in an 8-digit password (which you can change via the handheld app) when you connect to its wireless signal. I would not recommend changing this password because the risk of someone in your immediate proximity stealing your images is far smaller than the risk of forgetting the password and bricking the card.

Second, on Keenai, it is zero-configuration. It sees the phone is connected to a FlashAir card, and then it goes to town downloading everything (JPG and RAW). I think the assumption is that your phone will only be connected to one card at a time.

Third, the Toshiba cards seem to eat batteries less, although the effective range seems shorter. I am still testing this, but that kind of tradeoff would not at all be surprising.

 

Finally, the W-04 transfers about twice as fast as the Eyefi over WiFi, and its card write speed (UHS-3, which I measure at 63.3Mb/sec write speed) is high enough even to be reliable with the finicky Leica Ms. This actually makes them useful even when you don’t need WiFi connectivity. Speeds (as tested by me through the iMac 5K’s built-in card reader)

  • Flashair W-04 (64mb/sec write, 88mb/sec read)
  • Eyefi Mobi Pro 32 (17mb/sec write, 19 mb/sec read)
  • Eyefi Mobi 32 (18mb/sec write, 19mb/sec read)
  • For reference, a Samsung Pro non wireless card (rated 80/90) runs at 64/88.

…so as you can see, “Class 10” covers a lot of territory (basically 10mb/sec and up)

Unsolved problems

There are two last annoyances.

One is that iOS devices are hostile to the idea of strict priority lists for wireless. At home or work – where your handheld would be connected to a permanent network, you would want EyeFi or FlashAir cards to trump the local Wifi when they are active (since they are only active for shooting or file transfer). This is not a problem inherent to the cards themselves, but it makes using them less fun.

Second, wireless host programs like to store downloaded images in their own purgatory rather than dumping them all directly into your iOS photos storage. This means that you end up storing two copies of some (or all) pictures, eating into onboard storage. This actually is within the province of Keenai to fix.

Conclusion

With the maturation of wirelsss SD card card technology and of editing programs like Lightroom CC mobile, you can now actually get more done in more places. And yes, they even work with Sony cameras.

 

 

No love for the Empire? Leica Multifunction Handgrip M 14495

M-EQUIPMENT-MULTIFUNCTIONAL-HANDRIP-POWERFUL-PLUS_teaser-960x640

The Multifunction Handgrip M (14495), $895, is a depressing piece of hardware. It’s not the price or the alleged GPS slowness. It’s the depressing feeling that like a lot of things, the M camera reached its highest point of elaboration and now is on the path of decontenting that hit a lot of other types of consumer electronics.

Hello and goodbye. The story of this product is wrapped up with the M typ 240 (and its cousins the M-E 262 and Monochrom 246). The 240 was a watershed moment for Leica – the first time the M had actually become functional like other people’s cameras. It signaled a few firsts:

  • Video. Not the best HD video ever, but with the new EVF(!) it was passable.
  • Audio input. Plus it actually had a way to get audio into the camera! But no EVF and mic adapter at the same time. In every life, some rain must fall.
  • A digital horizon that operated in 3 dimensions (so it could detect pitch and roll).
  • A high capacity battery.
  • A function button on the front that could trigger exposure compensation adjustments or viewfinder magnification.

How many of these features made it to the M10? The front button. Now let’s see where the Multifunction Handgrip takes you:

  • GPS. Every want to auto-tag your photos with the location?
  • SCA flash connector. Now you can connect to a flash via a metal plugged-cord or a standard PC outlet.
  • AC connector. Now you can run your camera on video for the allotted 29 minutes at a time (before the auto shut off).
  • USB port for tethered operation (likely why the AC connector is so important).

But then there came the M10, thin like a 90s shoulder pad. No more video. No more need-to-keep-it-level landscape photography (apparently…). Smaller batteries, as if the thrill of living had gone.

Weight? The 14495 adds surprisingly little weight to the M. That’s because everything but the baseplate part is plastic. Naturally, the light grip does not change the balance of the camera, so you need to use brute strength (and grip) to keep big lenses level.

Grip? The ergonomics of this are something that grow on you. At first, you feel like it could be a centimeter taller to accommodate your index finger. But wait – that’s the one you need to press the shutter. It doesn’t take long to adapt to this grip, and it greatly enhances the handling of the camera with huge lenses like the 75/1.4. Every little bit counts, and an M is pretty slippery, even with the little nub grip built into its case.

GPS? It works. Just put your camera in standby, and within a few minutes, it will get a fix. Once it’s running, it seems to be pretty accurate.  A lot of people seem to complain that when it loses a signal, it continues to log its last known location. That’s actually beneficial when you go indoors (since you don’t want it to revert to a location in the center of the earth, for example).

“Near-field” communication. You always wanted this on a digital camera, but you didn’t want Android. Well, here you go. To get a wifi signal out of a card (like the Toshiba Flashair, which will be treated in a future installment), you basically need to have your handheld touching the top plate of the camera (which apparently is the most porous surface for radio waves.

Flash. Flash. Flash. So you want to know how well the 14498 SCA setup (another bazillion dollars) works? It consists of a bracket and an extension shoe. The idea of this product is to allow you to move the flash off camera both to enhance balance and to free up the hot shoe for an optical or electronic viewfinder.

 

M-EQUIPMENT-SCA_ADAPTER_SET_teaser-960x640

The disappointing thing is that there is no vertical grip piece, meaning that your flash head is much closer to the lens axis in landscape mode than you might like. So this works better out of the box with taller flashes like the SF 58 or 64.

The weird thing is the SCA plug, which is both unusual and insanely well built. It probably requires 200 different machining operations. But like the EVF connector, it’s proprietary, meaning that you have exactly one choice for off-camera work. The exit of the cord near the body of the camera body seems weird at first, but after you use it a bit, you wonder why Nikon screwed up so badly with the SC hot-shoe adapters, which have huge cords that on an M camera either end up blocking the viewfinder or getting in your face, literally.

But the good thing with the 14498 is that you can get and use your favorite old Vivitar handgrip – because the extension shoe detaches from the bracket. And can be used without the bracket.

Flash operation is unremarkable (as it should be). You do not get a flash-ready indication in the EVF if you have it attached, and shot to shot lag time is not affected.

Conclusion. The Multifunction Grip M, if you can score one used for under $400, is a pretty good item. At that price, it’s not quite as outrageously expensive as list, and it helps tremendously with heavy lenses. As to the SCA set, it’s a tougher call, unless you can get one for under $200. Where the grip gives you a standard PC connector, you can use any handle-mount auto flash you want (such as a Metz 45 series). Flash may or may not be in your personal program, but I would remind you that the higher-end Leica flashes do high-speed synch very well.

Blade Runner 2049: image and inconsistency

BR2049elvis

First, the real motive for this is to avoid finishing a piece on three or four Canon p/s cameras from the 1990s and 2000s that you must try.

Let me start by saying this is a fantastic movie. Definitely worth 3 hours. If you liked the original, this is a distant continuation that is within bounds for narrative. And if Roger Deakins does not get an Oscar for this, there is no God, and many of us therefore will be able simplify our planning for the future.

But… I can’t resist taking Villeneuve’s masterpiece to task for some of its strange inconsistencies, not the least of which have to do with photography and technology. I am going to avoid discussing things I have seen elsewhere. Don’t read this if you want to avoid spoilers. Or if you want to read something coherent and not written in a sinus medication fever dream (thanks, autumn weather…).

*

*

*

*

*

Where are our black-border Polaroids? A central reference point of the first Blade Runner was photographs: Leon’s pictures of his friends, Rachael’s snapshot with her mom, and Deckard’s oddly anachronistic picture with an (iced tea? beer can?) and his ex-wife (or maybe that was his dad and mom?). Of course, the hard copies were all Polaroids with black borders and really cool red imprinting. The Blade Runner Curse, of course, would drive Polaroid out of business some 26 years later. Ok, not.

Photographs played a central role in the original movie – so much so that characters like Leon would risk death to retrieve collections of them. They stood in as a proxy for history – and a past. Replicants used them like holy cards. These elements are completely missing in BR 2049; the past is prepackaged – so much so that its consumers like Officer K even know it is fake. That seems to defeat the purpose of fake memories, does it not?

One of the coolest pieces of “not-quite-yet” technology you see in BR 2049 – related to the Sapper Morton scene and visible just for an instant – is a printed still photo with motion. That comes up but once. This would require one of the thinnest and most elegant power sources ever invented. Despite this super-cool print technology, photo drones are somehow larger than they are in backward old 2017, except for Niander Wallace’s vision drones, which looks like a combination of massage stones and every cheap electronic device sold on Ebay in 2003. The one constant is the massive and invasive image advertising; in the original, it was made up of blimps and Jumbotrons; now it is enormous holograms that know you’re looking – and interact with you. They even managed to jam a Frank Sinatra hologram into a Sony bottle. But by far the most incredible use of images is in the flickering holographic slugfest that Officer K and Deckard have in Las Vegas. This a perfected version of the distraction technique used by Scaramanga in the Man with the Golden Gun. And by “perfected,” I mean that Hervé Villechaize is not providing color commentary over a loudspeaker.

Through an eyeball scanner darkly. This whole thing at the beginning is actually absurd. Officer KD6-3.7ABCDEFGHIJK (no wonder Joi wants to call him “Joe”) goes to a remote location, the last known location of Sapper Morton. He sees a photo of Morton’s face on his car computer. Police procedures then (weirdly) require him to get close enough to a heavily-built, military-model, killer clone to scan a serial number on his sclera with a UV light whose bulb has to pulse for some reason. The clone will display this number this voluntarily, of course. Right. Then K has to cut said eye out and put it on a little scanner. To get paid. After killing a guy three times his size, of course.

The problem is that none of this is actually necessary. Morton is a manufactured product, and if there is no other way to identify him, facial recognition computing should have identified him within a reasonable doubt. And K should have aired Morton out as soon as he saw him.

But why the eyeball cutting? LAPD is coming out to close out the crime scene anyway (remember how Officer K comes back to a sealed scene – which he then violates?) Presumably a digital photo of a dead Morton would suffice until backup arrives to provide reinforcement. Except that we need the visceral thrill/horror. Because Chew’s eye shop in the first movie.

Also, did you notice that police body cameras don’t exist in this universe? I would think that if you have humanoid slaves running around with guns, you’d want to make sure that Miranda rights are being read and that no one is getting killed for a broken taillight on a Spinner.

Wood. We learn late in the movie that wood is so valuable that you could trade a small amount of it for a “real” goat. Niander Wallace’s office is full of it. So why didn’t we see Officer K strap Sapper’s tree to the top of his Spinner and take it? Ok, maybe a stretch, but somebody would have taken it.

Slaves clones that have holographic AI girlfriends? Let’s get back to this “getting paid” thing. Officer K is a Replicant, and a Nexus-9 “obedience” model at that. The entire K story is weird because we are told right at the beginning that he is a Replicant. It is implied that Replicants are second-class citizens. And yet K:

  • Gets paid above his living expenses, hence the emanator.
  • Rents and inhabits human housing (and a fairly big place by Manhattan standards) with no supervision.
  • Has a full suite of home automation.
  • Gets to drink the same whisky his human boss does.
  • Apparently has enough leisure time to read books.
  • Gets to smoke.
  • Gets his 2 seconds of pure water in the shower, which is probably as much as anyone gets.

In light of this, you can only wonder what the legal status of Replicants might be. It would actually have to be pretty good. I guess they have to do what their bosses tell them to (“join the club,” said every 20th century office worker ever) and can’t reproduce. Given where we saw Replicants in 2019 in the previous movie, you know, in offworld kick murder squads, mining colonies, garbage collection, you would think Officer K should be living in the basement of police HQ, eating gruel, living like a monk, reciting his Nabokov and liking it. Right?

So K is basically a human for all external intents and purposes. But then his department apparently tells his colleagues that he is a clone (so much for HIPAA… thanks, HR) and his memories are baloney. Coco the Mortician even uses the term “skin job” in front of him. That’s pretty gutsy considering that K could probably kill him with his little finger. But somehow it also becomes known to K’s neighbors that he is a “tin soldier” (ahem, who leaked this?). Wouldn’t you want your hunter-killers to stay on the down-low? When you’re going to out your employee/slave, why would you even bother making blade runners look like average people? Other Replicants seem capable of detecting their own kind, so it’s not even good cover.

Joi but no Luv. Ok. Back to the point. Part of K’s home automation is his AI girlfriend Joi. Understand that in this universe, there has been a history of violent mutinies by past models (due in part to their emotional explorations…). Clearly this is such an issue that you have to put the Baseline Test on even the new submissive models. And yet they allow K and his friends to have a technological toys for which they might develop affection? Granted, there are many who would become clone slaves if Ana de Armas was part of the deal. But still. And speaking of which, what the hell kind of holographic technology would allow Joi to appear outside a vehicle, through an opaque door? There is technology. And then there is physics. And then there is the need to write in a touching scene when Ryan Gosling is knocked out and in danger?

Replicant escorts but no pimps. Okay, so Mariette (Mackenzie Davis) looks really weird and crazy-eyed all the time. Because Mackenzie Davis. And the idea of a Replicant-Replicant-Hologram (RRH) ménage-à-trois is only slightly more weird – because it requires a variety of wraparound projection that does not exist in our universe. But who is Mariette’s pimp? Remember, in this universe, all Replicants are (expensive) capital goods owned by someone or some company.  They don’t reproduce (I guess that saves money on birth control for the escorts?), and as far as anyone knows, they are never freed from their non-human legal status. If Mariette’s a Nexus-8, she should be on an, um, kill list. If she’s a Nexus-9, she should have never left her employer. And who is that? The government? LAPD?

Let’s back up a step. How does an AI hologram hire an escort for her owner (or licensee, I guess….)? The ability to enter commercial transactions, to live in your own house, and to associate with whomever you like are rights associated with humans. Or Replicants. But now computer programs?

And for all of her baseline testing, it doesn’t freak Chief Joshi out that her would-be sexbot is letting his virtual girlfriend spend all of his paychecks on cheap booze and hookers? Is she even detecting that? She’s pretty much the worst detective ever (where’s the eyeball of the child   But her outfits are good. Not as good as Luv’s, but still respectable.

Bald man in the yellow box. This dude is not a Replicant? He claims to have remembered the blackout as a child. But this is the most android-looking guy ever to show up in this film series. Also, can “born humans” actually see in this color light?I guess if you’ve worked in a Philippe Starck hotel in the early 2000s.

Optical memory. Ok, so a background assumption is that there was some massive EMP event that eliminated all electronic records. Which is fine, except for the fact that Tyrell (and now Wallace) apparently stored everything in optical format immune from electromagnetic pulses: cats-eye marbles. Shooters, from the size. Why not just say that everything was stored on magnetic tape and that it got wiped by the pulse? If Pan-Am and Atari still exist in that universe, I’m sure that 4mm LTO does.

Wallace’s phantom security video. One of the more screwy things in the original BR is the lack of security cameras. I mean, Roy Batty manages to smoke Tyrell by getting in through an elevator with no camera – and without ever being seen by a security camera in the Grand Poobah’s bedroom? Same with Leon and Holden earlier in the movie (where are the metal detectors?). We see video of the VK test, but apparently no one is able to track Leon on the way out of the building. And yet, when it’s time to research Rachael when K comes to corporate HQ, here are a bunch of security videos that were taken in Tyrell’s office. And conveniently, they are shot from the POV of the original Rachael-Deckard introduction scene. Not from the Voigt-Kampff machine, which only scans eyes.

Gaff. I am so glad that they fixed the color balance on Gaff. I mean in the first movie, Edward James Olmos must have had jaundice — or someone had swung the Lightroom tint slider the wrong way to “acting in yellow-face.” Also, it’s apparent that in the 30 years between the movies, they taught Gaff how to speak in accent-free English and got him that surgery to fix those weird glowing yellow eyes. The LAPD must have great continuing education and awesome health insurance.

Props qua props. In Vegas, note that the readout on K’s scanner says that radiation is “nominal.” Which means normal. So the fact that Deckard is there does not bear on people’s weird need for him to be an android. And when Luv & her henchmen show up, the henchmen, inexplicably, are wearing gas masks. Why? If they are replicants, they would not be bothered by anything on site (because humans would not). There is no reason for them to be human, since Luv presumably would not be commanding human bodyguards. If they’re human, they also would not need the masks at all. So this is just for optics, so to speak? To make the guys faceless?

Stelline’s lab and that Zeiss thingie. So we get to Ana Stelline’s office. It’s like the holodeck from Star Trek: the New Generation. She’s got this thing with dials. Not sure I got a good look at it, but the number of settings and third-stop increments mean that it must have been made by Zeiss. When K comes in, she is generating a memory of a 20th-century birthday party. Which she could not have seen. It gets weirder when you realize that she programmed the wooden horse memory in the third person. You know, like in Rocky IV when Apollo Creed died and Rocky remembered running with him on the beach (in a completely heterosexual way). How did Stelline know what she herself looked like? I don’t think the San Diego orphanage/dystopian Foxconn plant had a lot of mirrors.

Syd Mead! Las Vegas is pretty clearly either a Mead design or Mead homage. The influential industrial designer (exported from Detroit, FYI) left his fingerprints all over this movie. But a really nice touch is that the K’s spinner looks like a DeLorean (n.b., it’s a Peugeot, which supplied DeLorean with engines), but the bad guys drive spinners that look like 1963 Lincolns that would have been in design when Mead was at Ford. That said, I don’t want to be the one to say it, but the production design of BR 2049 is not very consistent with the original. The Mead/Scott design for the original involved recycling and retrofitting old buildings. So unless the original was all shot in the Fourth Sector, there is a lot of explaining to be done about where all the pipes and ducts have gone – as well as what happened to all of the Asian people.

The law. Before the law sits a gatekeeper. To this gatekeeper comes a man from the country who asks to gain entry into the law. But the gatekeeper says that he cannot grant him entry at the moment. The man thinks about it and then asks if he will be allowed to come in later on. “It is possible,” says the gatekeeper, “but not now.”….The gatekeeper often interrogates him briefly, questioning him about his homeland and many other things, but they are indifferent questions, the kind great men put, and at the end he always tells him once more that he cannot let him inside yet. The man, who has equipped himself with many things for his journey, spends everything, no matter how valuable, to win over the gatekeeper. The latter takes it all but, as he does so, says, “I am taking this only so that you do not think you have failed to do anything.” (Tr. Ian Johnston). 

It’s common knowledge (at least among people who pretend to have remembered college lit) that Joe K is like Josef K of Kafka’s Trial. What you may not have connected is that visually, K’s approach to Deckard’s casino is actually an homage to the cartoon short that opens Orson Welles’ adaptation of the Trial. Except that Welles is narrating from “Before the Law,” an unfinished short story. I don’t know who in the production is channeling Melville and Eco, but at some point you come to the realization that this story has cadged half of all religion and western culture (for starters, Moses; Jesus, Mary, and Joseph; Pinocchio; Dickens’ Tale of Two Cities and Oliver Twist; Graham Greene’s The Power and the Glory, World War II soldiers and aviators (“[GI] Joe”), tech moguls…)

The starsSo an image that appears early on is where Niander Wallace makes a statement that “we should own the stars.” Stars only appear once visually, in the peyote-and-are-they-eating-Deckard’s-dog? scene. But Ana Stelline is a reference to “little stars,” meaning that the key to this mystery is on earth.

Elvis! No comment on what went on in the casino, and it’s an awesome sequence, but are the holographic projectors of the future really a bunch of projection TVs from the 1970s with R, G and B lenses? Or are these DLP projectors gone really, really wrong?

Joi (the reprise). This is just a nerdy technical point – when Joi appears naked in the huge billboard near the end, did you notice that her color scheme is that of a person shot in 720nm infrared? Including the black eyes? It’s actually pretty impressive, when you consider that the scene was shot live and optically, not composited in with a computer.

Ok. Back to writing up some Sure Shots. If you want to see a fantastic deconstruction of the original Blade Runner, check out Typeset in the Future. That article even shows you what is in the dummy text used in props.