Tag Archive | leica

Get a grip: the 107-year debacle of small-camera ergonomics

er·​go·​nom·​ics |  \ ˌər-gə-ˈnä-miksan applied science concerned with designing and arranging things people use so that the people and things interact most efficiently and safely (Merriam-Webster, 2021).

In the industrial setting, ergonomics is a matter of avoiding unnecessary fatigue, injuries, and discomfort. It is intended to promote both safety and efficiency. Ergonomics was first invented in 1949, after Barnack before the Leica M camera. There does not seem to be any suggestion that any camera made before about 1970 cared much about this science. Certainly, the Leica M camera – and most other small cameras – ignored this important principle of design.

Did you know that having an opposable thumb is not necessary to grip a camera the way Leica intended? It should not be a surprise that primates and even lower animals like raccoons have the right types of hands to grab cameras. Because small cameras are not actually designed for human hands. Let’s discuss small (6×9 and smaller) camera ergonomics in six rubrics.

1. How do you hold this?

Even before ergonomics had a name, small camera design went off the rails when small cameras were invented in 1914. Oskar Barnack – who being born in 1879 undoubtedly had shorter fingers than 21st-century camera users – designed the Ur-Leica with slippery round ends encased in a textured surface. This leicapithicus wetlzarensis was designed around a focal-plane shutter that did not cap and an arrangement that required a separate viewfinder. It was light, compact (65mm top to bottom), and for its weight and intended function, workable. Because you had to put the lens cap on between shots, it was not a speed demon; you were going to take the camera down from your eye to reset for the next shot costing a king’s ransom on rare double-frames of 35mm movie film. You could almost call it the mini 4×5 of its day.

There is a trope about the solid rocket boosters for the Space Shuttle ultimately tracking back to the width of a Roman horse’s haunches. Whether or not that is true is a much more difficult question than tracing our conception of how a “small” camera should appear. The Platonic form of a camera is, after all, a Leica M3, which for dimensional purposes is a taller and heavier Ur-Leica, matching dimensions to the single millimeters. The Leica inspired many also-rans from Europe and Japan, some of which turned out to be better, but all of them have the same formula: small squarish body, lever wind, viewfinder on the left. Most fixed-lens rangefinders were actually smaller than the Leica; once you substitute a leaf shutter in the lens for a focal-plane type, the body can be even tinier.

What’s wrong with this design? If the correct method of holding it it requires a paragraph-long written description, it is not a tool that is ergonomic. Leica’s own user manuals illustrate the poor hand-fit in pictures, but the written camera-holding instructions call into question whether it is the human who is being forced to conform to a tool.

Look at a Leica III or Leica M manual. Actually, look at a bunch of them. Needless to say, the right way to hold a Leica has evolved since the days of Barnack. The first suggested M grip, which tracked how the III was supposed to be grasped, completely disengaged your left hand from the focusing ring, meaning you would never be able to refocus and re-shoot quickly. The III series has you cupping the bottom corners of the camera in the fleshy parts of your palms. At least one version of the M3 manual says nothing about how to hold the camera; the more detailed one has the corner-to-palms technique again. If you look at other brands’ camera manuals from the 1940s to the 1980s, you will see a dizzying array of hand-cramping contortions.

The right hand position has stayed mostly the same. What you are supposed to do with your left has changed over time. Here is the end point of Leica’s evolution of descriptions with the M7 and M8/M9 (the M8 is shown; the M9 has the same description with the little Ikea Man holding the camera):

Leica M7

“As a practical accessory, we recommend the Mx hand grip which allows you to hold the Leica M[x] extremely steadily and to carry it with one hand/while keeping your hands free.” This begs the question – why can’t you hold an M extremely steadily without another $400 doodad? And how was it a hands-free device for the M[x]?

The record – at least as expressed in successive generations of Leica manuals – reflects a variety of “right” ways to hold a camera, then “suggested” ways (M6), then “correct” (M7/M8/M9) and with the M240 and onward, no guidance. The M240, in fact, moves the discussion of the optional M hand grip to the “accessories” section at the end. I guess given the number of Leica owners with postgraduate degrees, it’s part of the 400-level course you were supposed to take before you started at this school.

What you are even supposed to do with your right thumb seems to be a matter of interpretation, some manuals showing it, some not. The M6 manual references resting your thumb on the lever “in the standoff” position. The M240 and M10 have a nub on which to rest your thumb. The M10-D has an ersatz M2/M3 focusing lever/thumbrest whose position does not quite match an original lever kicked out. The new $300 Leica thumb-rest looks puts your thumb in the same position as the M10-D. As noted at the beginning of this article, the user of one of these cameras does not need an opposable thumb. This camera might require a totally different type of hand.

Hint: if you have long fingers, a good one-handed grip on an M240 is to put your index finger on the trigger, your middle finger on the function button, and your ring finger on the front of the camera. The camera can sit on your curled little finger (imagine a C parallel to the bottom of the camera). Your thumb rests vertically against the grip nub/control wheel. See? You can control everything, and your ring finger is still available to accidentally press the lens release.

They say if you injure your leg and then limp enough, you don’t notice it any more. This is probably the only reason that Leicas (or similarly-configured rangefinders) are thought to be “ergonomic” – it’s just the way it’s been for 100 years. Were “ever ready” cases really useful for protection – or were they makeshift “fat grips” around ill-shaped cameras?

As much as things like the Argus “Brick” are lambasted for their funny shapes and palm-poking corners, something that fills the hand is not all bad. Ask anyone who shoots Olympic pistol. But you can also ask Nikon and Canon, who figured out in the late 1980s that a fat right grip is advantageous, even if your winding motor is so small it fits inside the takeup spool. In fact, Leica uses that “fat grip” design on most of its non-M digital cameras.

3. The pocketability conceit*

“But wait, the Leica [or insert camera name here] is pocketable.”

Baloney. This might be true of a tiny minority of camera/lens combinations, or 1980s-style pleated trousers, but Leicas generally have not been “pocketable” since the advent of the long aspherical lenses if not since the M3. And grip-ability does not necessarily change the dimensions that would make something “pocketable.” Is a Hexar AF less pocketable with its front grip ridge than a Leica M3 with its flat front? Hardly. Even among other manufacturers of M-mount cameras, the ergonomics have been better, whether it is a palm swell on the back door, a grip ridge on the front of the right grip, or even something like a rubber covering. I suspect it is more Leica’s user base than the company that drives the need to keep things the same. Witness the fate of the CL and the M5.

Interestingly, what encouraged (and maybe forced) small cameras to become more ergonomic was the incorporation of batteries and motors into the right side of the camera, something that came in with cameras like the Konica FS-1, Canon T-50, and Nikon F4. Even in non-motorized SLR cameras, grip nubs began appearing on the right front of the camera (as on the Nikon FA). When you think about putting coreless motors and electronics largely on one side of the camera, and motor-driven shutters in the middle, the mechanisms in the bottom become considerably less complicated (open a manual-wind, mechanical SLR’s bottom plate to see the assemblage of shutter-cocking levers, pinions, and gears). And by a weird twist of fate, the lithium cells best-suited to powering cameras (like the 2CR5) had a chonk factor that made them better candidates for placement in a fat grip.

This brings us to a cruel irony: point-and-shoot cameras in the late 1970s and 1980s frequently had better ergonomics than what we would call “prosumer” cameras today. In fact, many of them have better ergonomics than the Leica, long-vaunted as the enthusiast’s camera. And I write that as a Leica user.

On the other end of the “small” camera spectrum are the ultracompact 35mm cameras (Rollei 35, Contax T*, Nikon 35ti, etc.). In a sense, you can cut them some slack because their major purpose is to be pocketable most of the time – at the expense of handling and durability. These were designed to fit in a sport coat at the racquets club or the horse track, to be shot for fifty or so exposures, forgotten by the owner, sold at his estate sale, rediscovered by some internet influencer, and then driven to stratospheric resale prices that hold up until someone discovers one of the following things: (1) despite often brilliant optics, they are miserable to use; (2) they are not as durable as once thought. Weight versus size is also a factor in ergonomics – and many of these cameras are lightweight and despite their shortcomings, not impossible to use.

*Ok, I only wrote this heading because the Pocketability Conceit either sounds like an old-series Star Trek episode name or a Robert Ludlum novel title.

4. O Camcorder, where art thou?

My maternal grandfather, being a doctor, retired at age 55 – assuming that like most men of his generation, he would be dead at 60. This did not come to pass (he was “retired” for 25 more years…), and after a couple of years of golf got bored and moved into TV production at his local station. Being an early adopter of almost every technology that existed, he would get the latest and greatest video equipment every year. This meant at every Christmas, he would open the trunk of his Lincoln Continental and among other gifts, pull out last year’s latest and greatest video equipment and leave it to the good offices of my parents.

One thing that was always striking about video cameras (and later camcorders) – especially by contrast to still cameras – was the amount of effort put into making them comfortable to use. This was important because the early cameras were really heavy. Pistol grips and shoulder rests for the “camera” were de rigueur when the “recorder” part was a huge heavy hard square silver purse, and even when recording decks merged with cameras in the mid-1980s, the emphasis was on one-hand control operation and anything that made it easier to hold a unit steady for a prolonged period. Zoom controls have always been able to be operated by the same hand that “presses the button.”

The “camcorder” design ethos bled over into consumer “bridge” cameras – the ones designed to bridge the gap between point-and-shoot and full-blown SLR. The Canon Photura, Ricoh Mirai, and Yashica Samurai – variously 35mm SLR and viewfinder AF cameras – acquired camcorder-like morphology, particularly pistol grips that were either parallel to the lens or adjustable. They did not experience some Chicxulub-level event; rather, they just didn’t catch on. In retrospect, it is not terribly surprising; they were expensive, didn’t look like “cameras,” and tended to be bulkier than their blocky cousins.

In an ironic twist, the replacement for camcorders was an atavism. But it was also a reversion to something else. When DSLRs, particularly Canons, became popular for video, they retained their DSLR shape – which was in turn based on a film camera shape dictated by a 35mm frame and the necessary film drive. This spawned an industry of workarounds – cages, grips, handles, and all kinds of other accessories that serve as indictments of functional design. Sony’s selection of a “quasi SLR” design for the A7 series is baffling; the a6x00 series is both more comfortable and (lacking a silly fake pentaprism bulge) true-to-function (as is the new A7C), especially when misused for video.

5. Left eye, right eye, leave me alone

About 25-30% of the human race is left-eye dominant, being made up of about 1/3 left-handers and 2/3 people who are right-handed but use their left eye for tasks involving critical focus or alignment. Eye dominance cannot be changed; this is a matter of hard-wiring from an early age. It is not a matter of visual acuity; it is a how efficiently one eye communicates with the brain.

For people who are left-eyed, cameras with left-side viewfinders automatically cause ergonomic problems with the use of top-mounted winding levers and cutesy “thumb grips.” On most such cameras, winding the camera requires you to move your eye from the viewfinder so you do not poke yourself in the right eye with a winding lever. This is disruptive. The Retina IIc and IIIc, as well as the Canon VI-T avoided this by moving the winding actuator to the bottom – and the Konica IIIA and IIIM avoided this by moving the winder to the front. Although the original Leicavit trigger winder was designed to speed up the knob-wind of the III series, the Leicavit M:

allows experienced photographers to shoot up to two frames per second without taking the camera from their eye

The only reason you would need a bottom trigger winder to take two frames per second without taking the camera from your eye… is that you are left-eyed. This is likely the same reason that people tolerated Leica’s relatively sluggish motor winders.

Perhaps the most befuddling thing about left-viewfinder cameras is why users are in manuals are shown with both eyes open (left eye just hanging out there; right jammed against the viewfinder glass). For a right-eyed person, this means that your mind will be trying to reconcile a reduced viewfinder picture with an unaided non-dominant eye while supporting the camera against half your face. Consider also that the center point between your two eyes is now even further from the lens axis. If anything, the left eye should be closed.

If you look through the viewfinder with your left eye, conversely, you can jam the camera in a 3-point brace between your nose and eyebrows and block your other eye with the camera body. And it is here that people of Neanderthal ancestry have a secret weapon: brow ridges.

Blessed are those, I guess, who are left-eyed and have access to left-viewfinder cameras without winding levers. For they shall inherit the stable hand-hold.

SLRs are more egalitarian: with their center viewfinders, they exist to oppress everyone. And we shall know their users by the leatherette and film-minder-window patterns impressed into their noses.


There is only one reasonably ergonomic twin-lens reflex: the Minolta Autocord, which allows you to hold the camera and focus without shifting your left-hand grip — and to fire and advance with your right hand. This is a massive improvement over the Rolleiflex’s insatiable need for constant hand-shifts (or having three hands if you use the pistol grip). Even in the Rollei’s end-state – the 2.8GX with its huge focusing knob – the operation is barely comfortable. The persistence of TLRs after the war is a strange thing. Germany always wanted to make medium-format SLRs, and a twin-lens was a way of approximating that before the mechanical engineering caught up. But the TLR, especially when used at waist-level, causes strange camera-to-subject angles for humans and is not the easiest thing to focus (at least Rolleis are not – an Autocord ground glass is slightly easier). Rollei stopped developing twin-lens cameras in the early 1960s, eliminated serial production of the F in 1976, and moved on to its own SLRs. Note that the user of the Rollei in the diagram below is not wearing a tie. This is an important safety tip. Neckties had a tendency to get ingested by the Automat’s film-detection roller, leading to asphyxiations. That is why seasoned Rollei shooters only wore ascots or bowties.

Does anything look comfortable here?

But more seriously, medium format has always struggled with how its cameras should be configured, starting with the Brownie that kicked off the 120 format. Some are boxes (like Hasselblads), some are oversized 35mm cameras (Fuji 6×9, Pentax 6×7). The earlier Pentax can be fitted with a bulky, heavy, and still somehow uncomfortable wooden grip. The 67ii finally got the message about having something of a right-side grip.

Other medium format cameras are standardized around Graflex-style film backs that were designed just after the war and make what would otherwise be slim cameras extra thicc. If a Horseman SW612 had a body with integrated film transport, it would probably be slightly wider but a lot thinner front-to-back. The Graflex-style roll back almost always requires an extended or set-back viewfinder so that you can actually put your eye to the eyepiece. Its principal virtue is that it is narrow, but it also sports a complex film path that brings you to this: if you have interchangeable backs, they are sufficiently slow to load that you probably need more than one.


There have been a few scattered ergonomic successes, like the Vivitar flash grip, the Linhof 220, and those camcorder-like SLRs and point-and-shoots from the 1980s. But those are exceptions to the apparent rules of camera-making: (1) all cameras must be boxes or cubes that don’t fit in the hand and failing that, larger versions of smaller un-ergonomic cameras; (2) all winding must require a hand off the camera or disrupted framing; (3) thou shalt never use the [left] side eye; and (4) if you don’t like what we’re offering, stuff it.

Fuji’s X-series aperture rings?!

Visible even in Fujifilm’s file photos, the aperture ring turns against the tide!

I was trying to finish a writeup on the Sony A7r2 with a 35mm lens versus Fujifilm X100-series cameras and got off on this tangent, which became too much of a distraction to appear in the other article. Sorry to drag you along for this ride, but it’s a gloomy, rainy Saturday afternoon, and it was either finish this or develop 12 rolls of film…

Someday, when Fuji is put in a room with bright lights and given the leather-glove treatment, it might be able to answer the question of why X-series lens aperture controls turn right toward their smallest apertures (or A). Although this sounds like a trivial problem, this kind of thing can and does cause momentary confusion when you are using two kinds of cameras at the same time. I discovered this over time when an X100T was one camera in use and a Leica M was the other. I’d end up with a little bit of confusion in aperture priority momentarily. The most frequent error was cranking the Fuji lens to A instead of to 2.0. Not a huge problem in terms of getting some shot — but perhaps a problem in getting the shot I actually wanted.

The way controls work is actually a big point of study, and the stakes with cameras are quite low. The stakes can be quite high in other contexts like aviation. Most of us encounter mild annoyances like badly-designed remote controls, Apple Watches, and manual transmissions that have reverse in a bunch of different inconsistent locations. Luckily, a digital camera is not an airliner, but you get the point. And the more tired someone is, or the more stress he or she is under, the more likely there is going to a problem. And photography can become stressful.

The point that was going into the other article is that “any manual control system that has sufficiently annoying quirks will encourage the use of automatic systems to avoid it.” If you take issue with that, consider how little you have actually used manual focus on AF-capable Fuji XF lenses. Their focus direction might have been a problematic issue as well, but frankly, the focus-by-wire is so terrible that everyone just uses the superb autofocus.

Digital camera viewfinders are pretty poor examples of human-machine interfaces. They are cluttered, they show numbers as digits and not graphically, and and there are too many things going on. This is a fault of pretty much every digital camera (except for Leicas, whose viewfinders have 8-segment LED displays that convey virtually no information).

One major point of the X series is to present tactile controls. The X-series aperture ring, both on the fixed-lens camera and interchangeable XF lenses, is a control-by-wire actuator that could have been designed to work in either direction. Perhaps more remarkably, it was designed both opposite to the Leica rangefinders the X-100 cameras and X-Pro cameras visually mimic and also opposite to about 60 years of Fuji’s own rangefinders.

This is not the first time an “Opposite Day” has happened; in 1998, Leica reversed the direction of the M film camera’s shutter speed dial for the M6TTL, and people went out of their minds. The problem was that on a Leica, LED over- and under-exposure arrows previously told you which way to turn the shutter speed dial or the aperture ring.* They were now inaccurate as to the shutter speed dial. With the M7 and then the digital M8, M9, M240/246/262, and M10 people just put the dial on A and left it.

*By the way, Leicas only had acquired LED meter indicators in 1984 with the M6, so people only had 14 years to have their brains calcify around the way the meter was supposed to work with the LED indicators. Previous Leicas, laying aside the M5 and CL, had no meters at all.

Back to the story. Now which systems turn right toward minimum aperture, like the X100n and the X-series mirrorless cameras? Rangefinder systems are color-coded red and Fuji’s own rangefinder systems bold and red.

  • Fuji’s X series 35mm SLRs
  • Nikon F lenses (historic ones)
  • Canon FD
  • Pentax K
  • Pentax 6×7 SLRs
  • Bronica RF645 rangefinder
  • Canonet rangefinders
  • Contax/Nikon rangfinders (not produced since the 1960s)

Which systems turn left? This is a start:

  • Leica screwmount (including clones by Avenon/Kobalux, Canon, Konica, Minolta, Voigtlander)
  • Leica M lenses (including Minolta M-Rokkor, Konica M-Hexanon, and Voigtlander VM)
  • Fuji V2 35mm compact rangefinder
  • Fuji 6×7 and 6×9 interchangeable lens rangefinders
  • Fuji GW and GSW series 6×7, 6×8, and 6×9 rangefinders
  • Fuji GS645S and GS645W rangefinders
  • Fuji GW670 rangefinder
  • Fuji TX / Hasselblad X-Pan
  • Contax T rangefinder
  • Contax G compact interchangeable-lens camers
  • Mamiya 6 and 7
  • Minolta Hi-Matic
  • Plaubel Makina 67
  • Fuji GX680 SLR (if the lever could be equated to a ring)
  • Copal and Seiko medium-format shutters (same note) (and Fuji G617/GX617)
  • Rollei 35/35s
  • Olympus Pen
  • Leica SLRs
  • Minolta SLRs
  • Konica SLRs
  • Olympus OM SLRs
  • Contax SLRs

Talk about being on the wrong side of history… The vast weight of rangefinders over history, particularly the ones the X series was intended to evoke… went the other way. What is inexplicable in this is that the X100 and XF-mount cameras were clearly very carefully designed from an aesthetic and basic control layout perspective. For reasons probably known only to one or two engineers, Fuji took a flier on this one. Was the idea to bring back the glory days of a Fuji 35mm SLR system that the world had forgotten? Left-handed designer? Conscious counterculture?

It is difficult to believe this was an oversight. But it’s also difficult to divine why it would have happened.

The 51.6% solution

This is just a quick note on a technical problem that plagues digital Leica cameras when used with older Nikkors: back focus. It is gratifying to know that Leica has finally recognized that many of its lenses don’t work so well on digital Ms due to “focus errors” that allegedly compound over the years. The real reason is probably more that film planes are actually and unintentionally curved, and a lens that makes the grade at the center there back-focuses elsewhere.

I was struggling a bit with a 10.5cm f/2.5 Nikkor, which though absolutely lovely aesthetically is one of the worst-engineered Leica lenses ever from a mechanical standpoint. And it back-focused. It back focused more with some Leica M adapters than others, but still.

Strike one with this lens is that the aperture unit rotates along with the entire optical unit. This means that if you adjust the collimation washer (for reasons I don’t fully understand, it’s always 0.05mm needed with any lens – just about the same thickness as Scotch tape), you also then have to reset the aperture ring to read properly. Also not 100% sure that infinity optical focus was really the problem.

Strike two is that the amount of front cell movement needed to compensate for back focus is absurdly great. So here, you’re messing around with focal length, but this the same way the MS-Optical Sonnetar gets calibrated…

Strike 3 is that the RF cam is not adjustable at all, with the tab pushed by a plunger running on a wheel that fits in a spiral track in the helicoid. Guess how this tab was adjusted for infinity at the factory? With a file. It makes sense, in a way. Calibrate the fixed infinity point on the focal plane by shimming the optical unit, calibrate focus at infinity by grinding the RF tab, and fix close focus by shimming the front cell. But it utterly sucks when you find out, 60 years later, that the tolerances that looked good on film with a Leica IIIc look like holy hell on digital.

So when you are dealing with focus errors, you have to imagine that the standard is a 51.6mm lens. At that focal length, if the RF matches the film-plane focus, the focus will always be correct, even if the infinity stop of the lens is beyond “infinity” on the scale.

For a telephoto lens, the rear cam still pretends it moves like a 51.6mm lens, but the actual optical unit moves much further. Hence, in a lot of cases, you can simply use a thinner LTM adapter (I think I’ve written about this before… somewhere). Most cheapo ones are thinner than the 1.0mm they are supposed to be.

But there is a different way to hack this with the 135mm, 105mm, and 85mm Nikkors: simply apply a thin and even coat of clear nail polish to the RF tab on the lens. This is a trick that you could theoretically do with lenses that have a rotating RF coupling ring (not tab), but it works exceptionally well with the Nikkors because the camera’s RF roller simply rests on the tab and doesn’t roll along it. This means that you only need to get the coating thickness right over a very short distance. Materials needed:

  • Sally Hansen clear top coat (not “nail nourishing,” just the hard kind).
  • CVS Beauty360 brand Nail Polish Corrector Pen (essentially a marker full of acetone that you can use to thin or remove extra nail polish).
  • LensAlign focusing target (if you own a Leica, you really want one of these anyway, just to figure out what the devil all your lenses are doing as you stop down).
  • Reading glasses.

So basically all you need to do is put a very thin coat of polish on the polished surface of the tab. Let it dry for 20 minutes. Here is the goal:

  • At f/2.5, your focus should be such that the 0 point is barely focused, with most of the DOF in front.
  • At f/2.8, your focus should be dead-centered around 0. The lens is actually way sharper here than at f/2.5. Doesn’t seem like much of an aperture change, but it is.
  • At f/4, your focus will be such that 0 will barely be in focus, with most of the DOF to the rear.
  • From f/5.6 down, the DOF will grow so that 0 is always in focus.

If it works, you’re done. The focusing errors this might induce further out are subsumed by depth of field increasing. If you need another coat, add one. If you are now front-focusing too much, use the Corrector Pen to remove some of the extra (or use a very fine nail buffer to remove some).

Never file or try to grind down the tab if your lens is front-focusing. Unless you can do it totally square, your lens will behave differently on different cameras. Leave this situation to a pro.

No love for the Empire? Leica Multifunction Handgrip M 14495


The Multifunction Handgrip M (14495), $895, is a depressing piece of hardware. It’s not the price or the alleged GPS slowness. It’s the depressing feeling that like a lot of things, the M camera reached its highest point of elaboration and now is on the path of decontenting that hit a lot of other types of consumer electronics.

Hello and goodbye. The story of this product is wrapped up with the M typ 240 (and its cousins the M-E 262 and Monochrom 246). The 240 was a watershed moment for Leica – the first time the M had actually become functional like other people’s cameras. It signaled a few firsts:

  • Video. Not the best HD video ever, but with the new EVF(!) it was passable.
  • Audio input. Plus it actually had a way to get audio into the camera! But no EVF and mic adapter at the same time. In every life, some rain must fall.
  • A digital horizon that operated in 3 dimensions (so it could detect pitch and roll).
  • A high capacity battery.
  • A function button on the front that could trigger exposure compensation adjustments or viewfinder magnification.

How many of these features made it to the M10? The front button. Now let’s see where the Multifunction Handgrip takes you:

  • GPS. Every want to auto-tag your photos with the location?
  • SCA flash connector. Now you can connect to a flash via a metal plugged-cord or a standard PC outlet.
  • AC connector. Now you can run your camera on video for the allotted 29 minutes at a time (before the auto shut off).
  • USB port for tethered operation (likely why the AC connector is so important).

But then there came the M10, thin like a 90s shoulder pad. No more video. No more need-to-keep-it-level landscape photography (apparently…). Smaller batteries, as if the thrill of living had gone.

Weight? The 14495 adds surprisingly little weight to the M. That’s because everything but the baseplate part is plastic. Naturally, the light grip does not change the balance of the camera, so you need to use brute strength (and grip) to keep big lenses level.

Grip? The ergonomics of this are something that grow on you. At first, you feel like it could be a centimeter taller to accommodate your index finger. But wait – that’s the one you need to press the shutter. It doesn’t take long to adapt to this grip, and it greatly enhances the handling of the camera with huge lenses like the 75/1.4. Every little bit counts, and an M is pretty slippery, even with the little nub grip built into its case.

GPS? It works. Just put your camera in standby, and within a few minutes, it will get a fix. Once it’s running, it seems to be pretty accurate.  A lot of people seem to complain that when it loses a signal, it continues to log its last known location. That’s actually beneficial when you go indoors (since you don’t want it to revert to a location in the center of the earth, for example).

“Near-field” communication. You always wanted this on a digital camera, but you didn’t want Android. Well, here you go. To get a wifi signal out of a card (like the Toshiba Flashair, which will be treated in a future installment), you basically need to have your handheld touching the top plate of the camera (which apparently is the most porous surface for radio waves.

Flash. Flash. Flash. So you want to know how well the 14498 SCA setup (another bazillion dollars) works? It consists of a bracket and an extension shoe. The idea of this product is to allow you to move the flash off camera both to enhance balance and to free up the hot shoe for an optical or electronic viewfinder.



The disappointing thing is that there is no vertical grip piece, meaning that your flash head is much closer to the lens axis in landscape mode than you might like. So this works better out of the box with taller flashes like the SF 58 or 64.

The weird thing is the SCA plug, which is both unusual and insanely well built. It probably requires 200 different machining operations. But like the EVF connector, it’s proprietary, meaning that you have exactly one choice for off-camera work. The exit of the cord near the body of the camera body seems weird at first, but after you use it a bit, you wonder why Nikon screwed up so badly with the SC hot-shoe adapters, which have huge cords that on an M camera either end up blocking the viewfinder or getting in your face, literally.

But the good thing with the 14498 is that you can get and use your favorite old Vivitar handgrip – because the extension shoe detaches from the bracket. And can be used without the bracket.

Flash operation is unremarkable (as it should be). You do not get a flash-ready indication in the EVF if you have it attached, and shot to shot lag time is not affected.

Conclusion. The Multifunction Grip M, if you can score one used for under $400, is a pretty good item. At that price, it’s not quite as outrageously expensive as list, and it helps tremendously with heavy lenses. As to the SCA set, it’s a tougher call, unless you can get one for under $200. Where the grip gives you a standard PC connector, you can use any handle-mount auto flash you want (such as a Metz 45 series). Flash may or may not be in your personal program, but I would remind you that the higher-end Leica flashes do high-speed synch very well.

Sony a6300 and Techart LM-EA7 II


Sony a6300 with Leica 35/1.4 Summilux-M ASPH and LM-EA7 II

Sony a6300: love to hate you

There may not be any point, six months after the fact, to writing anything about the Sony a6300 compact camera. Well, maybe there is. Sony APS-C cameras are something that Fuji fans love to hate. And what’s not to hate from their perspective? Sony doesn’t make cameras that look like old rangefinders or SLRs, Sony lords it over Fuji with sensors that are slightly ahead (Fujifilm buys sensors from Sony, so it is not going to get the pathbreaking product immediately), Sony lenses are supposed to be terrible, and despite all this, Sony still outsells Fuji by an order of magnitude. How could this be?

— Sony strengths relative to Fuji in the mirrorless arena

The two possible answers are video and AF performance. Video on the a6300 is nothing short of phenomenal: 4K, 120fps HD, and just about every type of video gamma geekery that you could want. The Multi-Interface Shoe allows for some interesting snap-on microphone options, including XLR and wireless. The worst thing anyone has said about the a6300’s video is that it has rolling shutter problems, and the answer to that is really, so what? It’s an artifact of any mirrorless camera when used for video. And since Fuji sources its sensors from Sony, you’re not going to do any better. In fact, no one outside the Fujisphere considers Fuji’s video in any way significant.

The focusing speed and accuracy a NEX/Alpha has always been somewhat incredible. Even back to the old NEX-5, Sony could make lenses that silently and smoothly achieve focus on faces. The a6300 with its kit lens posts some insanely fast times, and Sony’s claims about continuous focus tracking are largely true, at least as far as this author has been able to reproduce the right photographic, ahem, “needs.” In fast action, a camera with poor lenses but a responsive system does much better than a more ponderous camera/lens combination that misses the forest for the trees.

One thing that is clear from the dpreview.com tests is that with whatever mystery lenses the site used to test the X-Pro2 and A6300,* there is almost zero difference in image quality, anywhere on the frame.

*Never disclosing the lenses used is dpreview’s second-biggest failing. The first is retconning itself into the time before the internet and digital cameras existed. Sorry. That was a mistake. The first is allowing itself to be bought by Amazon. Then the second is retconning. Then the third is mystery lenses (apologies to Steve Martin).

— Handling

The A6300 is fairly easy to handle. The grip section of the camera is substantial, and in general, it is easy to operate. No one, though, understands what the second command dial is doing on the top deck. It’s not comfortable to use with the camera at your eye. Controls are snappy and solid, as is the general build.

— Viewing

The A6300 has the latest OLED high-density electronic viewfinder that features a 2-axis level (pitch and roll) and more information display possibilities than you want to admit you want. Battery life is helpfully provided by percentage (and if there is one nice thing about Sony batteries, they are good communicators. Shooting does not black out in continuous mode. The EVF senses heat (infrared radiation); hence, its eye sensor does not react to glass-lensed glasses or sunglasses. If you don’t like the EVF, there is a big LCD on the back. Knock yourself out.

— Shooting

This is mostly unchanged since the a6000. The big thing is silent shooting, which uses a front and back electronic curtain (you can also choose electronic front or mechanical front). Silent shooting has two failure modes: first, in any situation with fast-moving objects, the progressive read of the sensor will cause typical “rolling shutter” artifacts. Second, dimmed LED lights (dimmed at the wall switch) flicker, even at full brightness, and can cause light banding in the finished frame (rolling shadow).

— Legacy lenses

One big note is that it is not particularly easy to engage viewfinder magnification on a shot-to-shot basis. You either have to learn to live with focus peaking or slow way down if you want to focus older SLR lenses, for example.

— Accessories and cutting corners

If you are accustomed to older NEX cameras, you will marvel at how Sony expects you to charge this camera with a USB connection to something else. The better solution is the Sony BC-TRW, which is a microscopic dual-voltage charger. It actually has four charging indicators (1-3 and off – meaning “fully charged.”). But yes, you still get a useless camera strap in the box.


An exit from the closed system

The problem with APS-C camera systems, whether Sony or Fuji makes them, is that they are closed, highly proprietary systems. You can’t stick a Fujinon on a Sony; you can’t get a Sony Zeiss lens onto an X-Pro2. Change systems? Get ready to pay the price when you sell your old system’s lenses.

There are two tired retorts:

  1. But the system has all the lenses you’ll ever need.
  2. Why don’t you just mount legacy lenses on an adapter?

The first argument is disposed of easily: what if you don’t like the one lens with your preferred angle of view and preferred maximum aperture? What if you don’t want to shell out for new lenses? What if you need the money for booze?

The second fails due to the kludge factor. Yes, it’s possible to mount other lenses on these bodies for use with cheap Chinese adapters and your old lenses. It’s also generally miserable. Both Fuji and Sony allow focus magnification, but Sony makes it difficult to use when a non-Sony lens is mounted. Both makes have focus peaking, but that’s not as definitive as you think. And although Fuji offers a phase-detect driven split-image manual focusing function, it’s not that much fun and not that fast to use.

The “out” provided by Sony was to enable phase-detect autofocus with third-party lenses. This enabled things like the TechArt LM-EA7 II adapter, which in theory allows the autofocusing of any M mount lens (or lens that can be adapted to M, provided it physically fits the adapter). If this works, it would be a game-changer, since it would bypass the usual foibles of adapted lenses (focus difficulty and inaccuracy of focus peaking being two big ones). Is this true?

The good, the bad, and the ugly with the LM-EA7 II

The adapter comes in a nice, foam-padded box and includes a NEX/E-mount body cap and rear lens cap. This is a nice touch, since people who bought the a6300 with a kit lens will have neither.


50mm f/1.5 ZM C-Sonnar with LM-EA7 II

The good news is that with the sweet spot for Leica lenses: 35-50, the LM-EA7 works like a charm. The noise is a faint whirring, and the Sony phase-detect system fairly effortlessly computes and reaches the focus point (provided, of course, that your lens would ordinarily need 4.5mm or less of travel between infinity and minimum focusing distance).

Some observations:

  1. Focusing is through the lens, at shooting aperture. ***This forces the camera to automatically adjust for focus shift on fast lenses, again making the a6300 more accurate and repeatable than a Leica M body, which can only have accurate focus at one aperture.
  2. The camera plus adapter can focus on an off-center subject using (for example) wide AF. Face recognition works with this adapter, even though the adapter supports phase-detect only. ***This is significant because it means that the a6300 can more accurately focus fast Leica lenses on off-center subjects than a Leica body can.
  3. The camera plus adapter rarely misses, even off-center. In fact, the focus with things like the 50/1.5 ZM Sonnar (the modern version) is better than can be achieved with a rangefinder (naturally, due to focus shift).
  4. The adapter is serviceable with 75mm and longer lenses, provided that you pre-focus to somewhere at least near the expected focus point.
  5. The adapter, by virtue of its inbuilt extension, gives you slightly closer close focus with 35mm and shorter lenses.
  6. There is little or no color shift with adapted wides. Depends on the lens, but even the ZM Biogon 4.5 seemed to do ok.
  7. Flash works with the adapted lenses.
  8. The multi-shot vibration-reduction mode works (JPG only).
  9. The weight limit for the objective assembly (lens plus any adapters to M mount) is 750g. This is well beyond what you need for almost any Leica-mount lens and covers most DSLR prime lenses (if you go lens – to M adapter – to LM EA7 – to camera.
  10. The artistic effects, such as “Sad Clown with Single Tear Airbrushed onto Sweatshirt” still work with adapted lenses.

Now, what’s the catch? Well, there are seven.

  1. PDAF does not work for video, and the adapter does not do contrast-detect.
  2. Due to some clear limits in the Sony PDAF software (which is probably set up to look for big focusing changes), wide lenses (≤21mm) and lenses with maximum apertures of f/4 or smaller do not focus well. Granted, why do you need AF with these lenses?
  3. The motor part of the adapter hangs below the camera, making it hard to set the camera down. This is not entirely negative because it also makes a nice grip.
  4. Not all SLR mount to M mount adapters work. In general, you have to use the Leicaist versions because they taper enough to miss the motor unit. Konica AR is one of the couple that work with the adapter, and even then, it’s just the typical Chinese adapter with a relief milled into it to clear the autofocus adapter.
  5. Taking the camera’s aperture setting off f/2 or 2/8 tends to cause overexposure.
  6. The system for selecting and recording lens-specific metadata is confusing, pointless, and possibly both. Your best word may be to record everything as 15mm.
  7. It does take a toll on your battery.

Tips and tricks

  1. Disengaging AF. For some reason, there is a lot of internet kvetching about how it is difficult to disengage AF. This is probably based on old firmware that requires you to use Aperture Priority and turn to a small f/stop. It is actually very easy to disengage the AF temporarily. If you press and hold AE/AF-L on the a6300, the adapter will park at its “infinity” setting, the focus peaking will come on, and you can then focus manually. When you let go of the AE/AF-L button, the adapter goes back to normal AF operation (make sure the lens is set to infinity before you do this!).
  2. Quickly overriding face-detect or wide area AF. If you have the camera set to wide AF, and you press the center of the back wheel, it will go into spot AF, center area only. It will also automatically focus in that zone. There are many possible green boxes, so it’s not like spot AF – but it suffices in most situations where you need an arbitrary focus point.
  3. Minimum focusing distance. With a travel of 4.5mm, and the lens set to infinity, the adapter does not have extension enough to reach minimum focusing distance with any lens over 50mm. The slight exception appears to be some zooms, since their designs often obviate a direct relationship between focal length and extension while focusing. Minimum focusing distance, though, is all in your mind with the A6300, whose narrower angle of view causes you to back up to get the same field as with an FX/35mm camera.
  4. Prefocusing longer lenses. With long lenses the quickest and easiest way to get to a range where you can achieve focus is to press AE/AF-L (which parks the lens), turn focus peaking on, and focus to a point where focus is just behind the intended subject. Once you are there, let go of the AE/AF-L button to reactivate AF. Because you focused behind the subject, and because the adapter extends (thereby moving the focus point closer to the camera), you have now put your lens exactly in the right place. Needless to say, the longer the lens, the less frontward subject movement this technique will tolerate.
  5. Marking your close-focus point with long lenses. If you habitually shoot at 1-1.5m, find the right “parked” focus distance (see above) and then mark it on the focusing ring with a dot of colored paint.



Konica 57mm f/1.2 Hexanon AR, shot by the Konica 35-70 f/3.5-4.5 Zoom Hexanon AR ($50), the “plastic fantastic” in its quasi macro mode, on the LM-EA7II.

Yes. In general the performance of this adapter depends on two major variables: lens weight and maximum aperture.  The former degrades focusing speed; the latter, certainty of locked focus. As noted above, Hexanons were tested due to the availability of an ulterior SLR adapter (plus I had a bunch sitting around).

  1. 35mm f/1.4 Summilux-ASPH M (pre FLE)
  2. 40mm f/2 M-Rokkor
  3. 50mm f/1.1 MS-Sonnetar
  4. 50mm f/1.5 ZM C-Sonnar
  5. 50mm f/1.5 Jena Sonnar (prewar)
  6. 50mm f/2.0  M-Hexanon
  7. 50mm f/2.4L Hexanon
  8. 50mm f/2.8 Jena Sonnar (with Amedeo dual-mount Contact to Leica adapter)
  9. 50mm f/2 Jena Sonnar collapsible prewar
  10. 50mm f/2 Carl Zeiss (Opton) Sonnar, postwar
  11. 75mm f/1.4 Summilux-M (prefocus)
  12. 90mm f/2.8 M-Hexanon (prefocus)
  13. 10.5cm f/2.5 PC Nikkor (LTM)
  14. 40mm f/2 Hexanon (AR) (Konica mount via Leicaist adapter)
  15. 57mm f/1.2 Hexanon AR
  16. 35-70mm f/3.5-4.5 Zoom-Hexanon AR
  17. 85mm f/1.8 Hexanon AR

Kinda. For wide-angle, medium aperture lenses the adapter does not do so well because Sony’s phase-detect AF isn’t set up to split hairs.

  1. 24mm f/2.8 Hexanon AR

No? Here, the details are too small and/or the depth of field too much to get an easy lock (or sometimes, any lock) with the A6300 [edit note: this appears to be due to the camera’s having difficulty in deciding where the focus point should be – and even in its “spot” modes, the a6300 is picking a focus point]. The behavior on these is more deliberate focusing, almost as if the camera had switched into contrast-detect].

  1. 18mm f/4 ZM Distagon [too wide, too small an aperture]
  2. 21mm f/4.5 ZM Biogon [too wide, too small an aperture]
  3. 21-35mm f/3.4-4.0 M-Hexanon Dual [too wide, too small an aperture]
  4. 50mm f/1.5 Carl Zeiss (Opton) Sonnar [aberrations that Sony AF can’t understand?]


The Sony A6300 is a pretty formidable camera for video and not a slouch for stills provided either that your style does not exact ultra high performance from kit lenses or provided that you are willing to invest in better Sony or Sony/Zeiss glass.

The LM-EA7II may never be good for sports or high-intensity moving work, but it provides some fun with old lenses, or as much of it as you can take! It’s actually a bit irritating that I did not have an A7-series camera on hand to try it.