DxO One: Liberté, egalité, insanité

2001composite

My first DxO One (version 1, $125 new on clearance) bricked when I upgraded the firmware. Left with an inert toy while Amazon dug up another one to send me, I could not help but play with the dead one. I flew it up to the water/ice dispenser on the refrigerator. “Open the pod bay doors, HAL.” Nothing.  The DxO One rotated 180 degrees so that it could eject the micro SD card into the…

“Dad, what are you doing?”

“Uh… nothing.”

But seriously, the DxO One is one of strangest and most wonderful cameras to come out of France, or anywhere. Here’s why.

Sensor. The camera uses a 20Mp,  1″ Backside Illuminated (BSI) sensor (3x or so crop factor) made by Sony, the same one as on the RX100III. Two things make this a standout here: first, BSI sensors are quite good – meaning this returns results almost on par with the Sony a6300’s copper-wire conventional sensor. Second, almost all sensors perform equally at base ISO. In the software design, DxO biases the camera toward lower ISOs and wider apertures (which makes sense, since a 1″ sensor starts diffracting at f/5.6).

How does this compare to an iPhone XS sensor? Well, it’s almost 70% more resolution and 6.7x times the surface area (116mm² x 17.30mm²). Do the math. All the computations in the Apple world can’t make up for this type of difference in displacement. This does expose the genius of portrait mode, though – because not even a 1″ sensor is big enough to have easy-to-achieve subject isolation.

The sensor is used for contrast-detect AF (with face priority).

Lens. 32mm equivalent, f/1.8-11 aperture, six groups, six elements, with some of the weirdest aspherical shapes imaginable. It’s very tough to find a lens on a compact camera that approximates a 35/1.8. But here you are.

Shot with DXO ONE Camera

Far from being telecentric with an expected “folded optics” path, the DxO One uses the cellphone method with almost zero distance between the rearmost element  and the sensor. The rearmost element looks like a brassiere. Like this:

one-design-technology.png

The lens is happiest at larger apertures (f/2-f/4).

Storage. The DxO One accepts standard MicroSD cards. I was able to test up to 128Gb cards  (Samsung EVO Plus), and it is able to read and write to them with no issues.

Power. Power comes from an internal battery but can also be fed directly from a micro USB cable. The battery takes about two hours to charge and does about 200 shots. Version 2 of the camera has a removable back door to accommodate an external battery pack DxO no longer sells. You also lose the free software (see below).

Viewfinder. Your choice of two. You can plug the camera into your iPhone, where you can use the DxO One application and the phone screen as a viewfinder. Alternatively, version 3.3 of the camera firmware turns the little OLED screen on the back into a square contour viewfinder, good enough at least to frame the middle square of the picture – and surprisingly good at estimating a level angle for the camera. You could also split the difference with a Lightning extension cord.

Connectivity. The camera was originally designed to connect via the Lightning port, but DxO enabled the onboard WiFi so that now you can use the application on the phone and control the camera (including view-finding) without a physical connection. The DxO One can also connect to your phone via your home wireless network. WiFi operation – no matter what the camera or phone – is not as much fun as it first sounds – which is why the DxO product is more flexible than Sony’s wireless-only solutions.

Shot with DXO ONE Camera

Software. In terms of the camera’s software, all the magic is under the hood. The camera switches on by sliding open the front cover (slide it all the way, and the Lightning connector will erect itself). There is a two-stage shutter button on the top and you can swipe up and down on the OLED to switch between controls and viewfinder and left and right to toggle photo and video. The camera stays on the exposure mode last selected from the DxO software on the iPhone.

The DxO One phone app is well-done and responsive. You can use it to frame, shoot the picture, and control what you want. Features include:

  • JPG, Raw, and Super Raw (stacked) exposure modes.
  • Single-shot, timer, and time-lapse settings
  • Flash settings
  • Subject modes and the usual PSAM modes.
  • Program shift (between equivalent exposures with different shutter speeds or apertures).
  • Single AF, Continuous AF, On-Demand AF, and Manual focus (manual includes an automatic hyperfocal calculation if desired).
  • Matrix, centerweighted, or spot metering.
  • Grid compositional overlay.
  • “Lighting,” which is like a mini HDR compressor for JPGs.

You can also look through the exposures on the camera/card and move them to your phone as desired. As noted above, though, you do need to initiate wireless connections with the camera connected.

If you get a version 1 camera, new, it also comes with DxO Optics Pro 10 Elite (now Photo Lab 1 Elite) and DxO Filmpack Elite. But you have to be able to document that you are the original owner of the camera. Both of these can run as standalones or can be external editors for Lightroom. Photo Lab 1 is also capable of replacing Lightroom.

If you get version 2, you’re out of luck. But you do get a 4gb SD card and the detachable back door for that battery pack.

And either way, you do get DxO OpticsPro 10 for DxO One, which gives you a nice imaging/digital asset manager that can composite SuperRaw files. SuperRaw is a stack of four successive (and extremely rapid) exposures that cancel out high ISO noise.

And if you don’t like any of that, the DxO One outputs normal DNG files that you can simply edit to taste in Lightroom. There is a Lightroom profile for the camera’s minimal residual distortion.

Ergonomics. This is the one place where things are sketchy. It’s hard to hold onto a small ovoid object, especially one with a button on the top. I would highly recommend a wrist strap.

Upshot. Maybe not the most compelling camera at $700 plus when it came out, but now that it is a sixth of that and still a lot of fun to shoot, go for it!

Shot with DXO ONE Camera

 

Advertisements

Digital photography – really photography?

Can you believe that Pullman is used for “bus” in parts of Europe? Jeez, I thought that a pullman was inherently a rail vehicle. How dare usages change! Somebody get on the Rail Transport User’s Group (RTUG) and post a philosophy question. We need to take the name Pullman back!

But really, how many hours of the waning days of old men’s lives have been wasted arguing about whether newfangled cameras grabbing electrons can be “photography” as an art or a craft? How many should? Would that time be better spent arguing about cars, finishing, guns, boats, or wristwatches?

You can spin off into the etymological argument: electrons aren’t photo + graphy because the light is not making the image directly. Or there is transformation. Or something. Reliance on ancient Greek is misguided. Photography was a neologism invented in the 19th century. It was not true to the ancient Greek then (no thing was – or is – drawing or scratching in the sense of γραφή); the 19th-century term was just an arbitrary description for what happens when light was the prime mover in the imaging process. And we have legions of words whose meanings have deviated far from what they would have meant to Greeks or Romans – or even what they meant the first time the terms were coined. Hence the weird crossover between autobuses and rail cars.

Is photography art? If you believe that, look at what the art world says. It’s all photography. That’s what museums call anything that is an image captured by a machine (film or digital) where the substantive content originates in the original image recording process. The only distinction made (and only sometimes) is for pre-silver-halide work, and even then only if it is one of the more obviously exotic (Daguerrotypes, Cyanotypes, and other things that deviate from the look of optical or inkjet paper). Odd that they don’t care what system originated the image; they only care about the medium it is ultimately expressed. Just like other things you see on the walls are “oil,” “watercolor,” “pastel,” “drawing,” etc. A “dye diffusion print” does not differentiate between originating on negatives or a Handycam.

Or maybe it’s not odd. Art requires a visible or tangible expression, and in the end, that is all that counts.

 

Take a stress pill: dual memory cards

nkz7.jpg

The Nikon Z7 is undoubtedly a quantum leap in Nikon’s camera evolution, essentially putting the best features of the Dxx series into a mirrorless body. Yet there is the inevitable complaint: “No dual card slot? Only one? No pro camera is like that!”

Pardon me, but plenty of pro cameras have been like that – and not just pro digital cameras in some benighted past (n.b., an era ending maybe 4 years ago). Consider the D2x and D700. Anyone want to call those “not pro” cameras? How about the flagships of the EOS fleet for a stretch?

In an era where film ruled the waves, it’s not like you could put two films into the same camera simultaneously for “backup.” And back then, pictures were scarcer and more valuable, and your chances of losing a shot due to a light leak, film defect, or development failure were astronomically high compared to anything that could befall a digital outfit.

So let’s move to digital. What is the measured malfunction rate of properly kept, brand-named CF, SD, or XQD cards? Hint: it’s astronomically low compared to the failure rate of the cameras that use them (SanDisk posts an MTBF of 1 million hours, or 114 years). Here are things that are far more likely to happen:

  • Dying (which is all but guaranteed within the MTBF cited)
  • Being killed in a car crash
  • Being hit by lightning
  • Finding a lost cousin on some genealogy site
  • Winning Powerball

The threat of a bad flash card bringing down the system is simply not a real thing for most people. Dropping a camera, having a battery burn out, or suffering some physical mishap is far more likely. Even being in a car accident is more likely. And for that matter, why wouldn’t “any responsible pro” bring an extra car? An extra photographer?

I suspect that many of the people complaining about this issue — if not simply fronting to front — are semi-pros who scraped up every last dime to buy one really good camera to shoot wedding pictures. Fair enough. Maybe they had a bad experience with a counterfeit card once. Abused a good one. Ran one into the ground. It’s also possible to screw up the file system of a card by failing to respect buffers that are still clearing or repeatedly using without ever doing an in-camera format.

But this group is not positioned to speak for all pros (i.e., make the statement that “no pro would…”). Real pros in every field use redundancy – and it’s not limited to using two cards in the same camera (which does nothing if your camera is the single point of failure). Redundancy could include:

  • Using smaller cards to reduce the “all eggs in one basket” effect. 32Gb is fine. Smaller media is one of the reasons that film was safe; 36 frames on a roll of film is small.
  • Rotating between cards over the course of the shoot (the nice thing about EXIF is that Lightroom can combine shots from multiple cards into exactly the right order).
  • Using two cameras and two cards, which means you will never be high and dry.
  • Beaming your images in real time using wireless (a Toshiba Flashair is great for this, though there is no XQD version yet).
  • Downloading one card to your laptop while shooting a second card.

When you consider the other options, thinking that two cards in a camera would get you off the hook seems a little odd, does it not?

Maybe the whole “multiple card slot” thing is a product of general societal economic insecurity. Or a “mine is bigger than yours” mindset. But any way you slice it, it doesn’t seem to make a lot of sense for most people.

End-stage​ Nikon manual focus

n6006

There must have once been an awkward moment when Homo sapiens neanderthalensis saw a gangly baby Homo sapiens sapiens and wondered, for the first time, what the future would be like. The Neanderthals basically merged into the surviving human line (or were eaten —  the explanation seems to vary now) — and essentially disappeared. But not before giving Europeans those nettlesome brow ridges and occipital buns.

Neanderthal shock happened sooner in the Canon world than it did for Nikon. Canon released its last mainline* manual-focus camera (the T90) in 1986. Canon did not then engage in a merging of genes but instead a lens-mount genocide. FD lenses faded fast as EOS came to rule the jungle. Nikon took a few more years to get there in 1990 with its last manual focus camera, though that camera lingered for five years on the market — and Nikon never really gave up on the F-mount. Well, not immediately. Like Neanderthals, some degree of interbreeding was available, but all that fur began to repel people after a while.  All of this was 23 years ago now.

By the way, when the last newly designed Nikon MF SLR went out of production, this was dominating the disco:

Nikon would in 2001 release the FM3a, but like the contemporaneous Beatles 1 album. It was just a rehashed FE2 with a new shutter. And that was so long ago that kids born then are old enough to vote. If you were an adult excited about the release of the FM3a, you’ve probably just passed out of the “18-35” demographic, if not past the “uncool 44” milestone. But don’t worry – Nikon has your back with retro-rerun cameras like that, the S3 and SP. Because it’s more fun to reminisce with cameras that were shiny and new (the first time) before you were born.

* By mainline, I mean serious and mass-produced. Yes, Canon made a craptastic T60 and Nikon made (or branded…) the FM10, but these were cameras for developing markets or students.

Detour into how Nikon’s product strategy: so many cameras

It would not be a Machine Planet article without a detour into some kind of editorial, and here is one: digital cameras did not usher in the age of meaningless upgrades and gimmicks designed to excite camera buyers into “one more body.” Film SLRs were the greatest feature-chase of them all: the lenses and the film are the ultimate determinants of performance on a film camera; everything else is metering, motor, and in some cases autofocus.

Consider that in 1980-1985, Nikon fielded five prosumer cameras based on the same platform (FM, FE, FM2, FE2, and FA), at the same time it fielded three based on an intermediate architecture (EM, FG, and FG-20), and a next-generation intermediate (N2000/F-501). All of these variations revolve around binary features/exclusions: needle meter or not; matrix metering or not; internal motor or not; program mode or not. And you thought Sony had a short attention span?

To be fair (why start now?!), by the sunset of Nikon’s manual focus cameras in 1995, post-processing was out of the reach of most people. Photoshop was at version 3 and barely able to handle the tasks it routinely handles today (it also fit on 5 Mac floppies…); scanners were insanely expensive; and if you had a bad slide, you were out of luck. If you had a bad negative, you were mostly at the mercy of Candice at Fox Photo to maybe run that one neg through the Fujitsu at N-N-N-3 instead of N-N-N-N (this person actually existed, was roughly my age, and was quite cute).

Even when Nikon made the jump to autofocus, this proliferation continued, with performance carefully meted out between models that used the same AF module (consider that the N50, N70, N4004, N5005, N6006, N8008/s, and F4 used the same module – with outcomes so different, you have to wonder what they were holding back.

But what was going on with the lenses?

Nikon’s lenses had a more tortured history that got off to its first wrong turn when Nikon started releasing metered prisms. That would have been the time to revise the mount to include aperture information (relative and maximum). Almost the entire subsequent drama of Nikon lenses was a product of trying to fix that: prongs, AI, AI-s, CPUs. When the Photomic metered prism came out in 1962, Nikon already knew that it was enough of a market force that it could have moved to a meter coupling in the body without losing its user base. For six long years, Nikon’s meter prisms required the user to set the maximum aperture of the lens on the meter, manually.

Actually, that didn’t just stop in six years. In 1968, Nikon introduced the FTn finder, with its semi-automatic indexing: mount the lens; turn the ring right, turn the ring left, done. The kludginess of this solution was only more glaring when companies like Konica were releasing lenses that could transmit maximum aperture information with a pin on the back of the lens (as opposed to a poky thing screwed onto its aperture ring) and using irises that were consistently linear, so as to allow automatic control of the iris. Granted, shutter priority did not predominate as a single-factor autoexposure method, but the point was that Nikon was well behind the curve. By 1971, Canon’s pro bodies had moved the meter cell to inside the body and were transmitting relative aperture position invisibly.

Nikon’s Aperture-Indexing (AI) lenses did away in 1977 with the prong, song, and dance because they fit cameras that only needed to know how many stops the selected aperture was away from wide-open. If anyone knew what the max aperture of the lens was, it was the user – not the camera. AI was in a way a step backward from the FTN, since it was only a system for transmitting relative apertures. And AI-only bodies turned out to be the full-employment act for repair people and machinists – because mounting an old lens on an AI body, absent modifications to the lens, the mildest of which was a new aperture control ring, would cause damage. AI ushered in a tiny doubled aperture scale, the Aperture Direct Readout (ADR) that some cameras could display in their viewfinders via a wedge prism, like the F2AS, F3, FA, F4, and F5.

The next iteration, AI-s (1981) brought Nikon almost up to date. It finally added a maximum aperture indexing pin to lenses (as well as a pin that transmitted the focal length to the camera. The only camera to fully implement this scheme was the FA, for its program and shutter-priority modes. There were three implementations of AI-s:

  • The FA used the full AI-s protocol for AI-s lenses, going open loop when shooting AI-s lenses (because it knew the maximum aperture, focal length range, and stop-down rate) and selected a program based on focal length. It went closed-loop when shooting AI and AI-converted lenses. By “closed loop,” I mean the camera reads the scene, stops down, takes another reading, and finally fires.
  • The FG and its replacement the N2000/F-301 all used a similar open/closed-loop setup, except these cameras could not read the focal length via the pin and thus only used one program (or one selected by the user)
  • The N2020/F-501 would act like an N2000/F-501, but it could switch to P-Hi from P-Auto when a CPU-equipped lens with a longer focal length was mounted.

Of course, with closed-loop exposure, the only value of AI-s is purely informational; the FA and FG/N2000 systems don’t really need to know maximum aperture to work. And when it comes to “Program” operation for AI lenses, is it really programmed in the sense of a neat little graph – or is it shutter speeds programmed against apertures stopped down against the maximum?

A tale of two cameras

Nikon’s technological peak came with the FA, pretty much the most sophisticated camera anyone had ever seen. Four (count ’em!) exposure modes – Program, Aperture, Shutter, and Manual, all powered by two MS-76 cells. Matrix metering with any native AI lens. Program shooting with any AI-s lens. LCD display in the viewfinder. And… it wasn’t quite ready for prime-time, developing a reputation for having flaky electronics and poor matrix metering. Or so people say.

In 1990, the successor to the FA, the N6000, hit the scene. The N6000 kept most of the FA feature set but swapped in some new features. Incoming ones included:

  • A 2 fps internal motor drive to replace the bulky MD-15
  • Auto film loading
  • Power film rewinding
  • Auto bracketing
  • Slow and rear-curtain flash
  • DX code reading
  • Automatic balanced fill flash
  • An “analog” (graphic) over/under-exposure display that pops up in manual mode
  • Exposure mode indicator in the viewfinder

You could argue that the N8008 was the successor to the “technocamera” FA, but the N8008 was an autofocus camera. Or you might have argued the F4, which is a cross between an F3, an MD-12, and an FA. The departures with the N6000 were somewhat less notable:

  • Elimination of interchangeable focusing screens (which were apparently not a popular feature of the FA)
  • A new reliance on CPU lenses (AF and AI-P), which allowed the correct aperture to show in the viewfinder without an ADR display
  • Loss of program mode for AI-s lenses (due to CPU dependency)
  • Loss of matrix metering for AI-s lenses (same)
  • Loss of a mechanical shutter speed
  • Loss of 1/4000 sec on the shutter
  • Change from MS-76 button cells to the somewhat less common CR223A/CR-P2.

But for all intents and purposes, this was “it.” Although Nikon continued to sell (not make) the F3 into the mid-2000s, the only newish manual purpose-built manual focus design was the FM3a, which is little more functionally than an FE2 with a shutter that could also be governed mechanically. It also followed a six-year period in which the N6000 was off the market.

On Earth-399, Nikon made manual focus cameras from 1959 to 2270. But that is also the universe in which “George Washington freed the slaves… Abraham Lincoln was regarded as the father of his country… and George Custer became president of the Indian Federation.” (“Superman… you’re DEAD… DEAD… DEAD,” 1971).

First in/last in (F3AF/F3)

Nikon had always managed to be both early and late to the AF party. The Nikon F3AF emerged in 1983, just three years into the F3 era. In fact, it came onto the scene at the same time the DE-3 High Eyepoint finder came out (this is the thing that makes the F3 into the F3HP, the most popular variant). The F3AF was the first camera to use electronic contacts to control lens focus, using a contact system that is eerily similar to current Nikon lenses – but with a motor-in-the-lens implementation that most people came to associate with Canon. The manual focus version of the F3 proved wildly more popular and became one of the longest-running Nikons in history, with a 20-year run. That is catalog time, not necessarily production time. When it was time for the F4, Nikon was playing catchup with Minolta and Canon on AF, whose amateur cameras were upping the stakes.

The forgotten Nikons (N2020/N2000)

In 1984-1985, just after the F3AF, Nikon made another pair of cameras, one with AF and one without. These were the N2020 (F-501) and its value-engineered little brother, the manual-focus N2000 (F-301). These were essentially a motorized version of the FG. According to lore, the N2000 was a last-minute decision from the accountants. That’s believable since it allowed the company to drop the FG and make two cameras on a common set of tooling. But it cannot actually be true, because the N2000 was the first of the two cameras to be released – and by a year.

Rather than the interchangeable screens of the N2020 (B/E/J), the N2000 had a fixed K screen (split prism plus micro prism collar), a LED shutter speed display (but no AF indications), and no automatic selection between programs (on the FA, this had required a post on AI-s lenses; on the N2020, it required a CPU to tell the camera the focal length). Common to both cameras, though, was a traditional control layout, a coreless drive motor for film advance, auto-loading, an exposure compensation dial, DX coding, plus pretty much everything the FG had – save the +1.5EV backlight button (the N2000/N2020 had an AE lock button that served much the same purpose). One mystery is why the N2020 was typically sold with an AAA battery holder rather than the N2000’s AA – since it is fairly obvious that the battery chamber was designed around AA. The smaller batteries required a special inset tray. But on the plus side, they do shave some height and weight off the assembled body. And the N2000/2020 is a pretty heavy body.

The N2000 is a camera with a level of elegance that we forget about: a large, bright, spartan viewfinder, a normal control layout, and a certain fluidity of shooting. Motor drives can be very important if you are left-eye dominant. Plus normal batteries that you can buy anywhere. Plus it has nice, sharp edges. It’s just not a camera that has the simulated chrome that is so popular with “the kids today.” And yes, by simulated, meaning that pretty much every “chrome” camera post-1980s has plastic covers.

But what about the N6006/N6000?!

The N6006 is something of a hidden gem in the Nikon line; it has most of the things you like about the N8008 (sans 1/8000 top speed, AA batteries, and high-eyepoint finder) in a smaller package. It is actually pleasant to shoot, though it does carry the stigma of using 223 lithium batteries. That might have actually made a difference a few years ago, when you could walk into a drug store and buy CR123As and 2CR5s, but today, all lithium batteries are more Amazon than the corner store.

The N6006 is one of many Nikons that share the AM200 AF sensor array (the others being the N4004/F-401,N5005/F-401s, N8008/N8008s/F-801/F-801s, and the F4. As you might have surmised from the AF performance differences in these bodies, CPU speed and motor torque are huge determinants of speed. The F4 is tops in both CPU and motor power, and the N4004 has the smallest brain and smallest muscles. The N6006 and N8008 are mid-range, and the N8008 has a more powerful motor.

The little brother, the N6000, loses some functionality compared to its AF twin: no spot metering (because that comes from the AF module), no built-in flash (spite?), and a slightly smaller LCD display (that omits the AF confirmation dot, obviously…). But all the same, it is much smaller and lighter. Oddly, it still does support (or for P and S, requires) CPU lenses. As an adjunct for occasional manual focus with otherwise-AF lenses, it is fine; in fact, examples of the N6000 sell for less than the price of any manual-focus-friendly interchangeable screen for any SLR or DSLR. So I would ask, are you better off…

Take a stress pill: shutter actuations

What is the maximum shutter actuations for the Nikon D700 [or Leica M9 or whatever]?

There is nothing such as “maximum shutter actuations.” People act as if there were some magic number. People freak out about this. The rated number is unlikely to be reached for most amateur photographers. It’s unlikely to be reached by two amateurs using a camera back to back. Maybe even three or four, unless one used the camera at the beach or somewhere gritty.

  • The rating itself is the MTBF, or Mean Time Between Failures. That means that on average, Nikon’s rated shutters last 150,000 cycles. You don’t know whether that means most last to 250,000 and relatively few go 50,000 or whether all of them are somewhere around 150k.
  • There is no warranty that a shutter will get to 150,000. Your two year factory warranty will expire one day, and it could be at 18,000 exposures or 180,000. Doesn’t matter. Nikon is not fixing it for you for free.
  • Inside the factory warranty, Nikon does fix it for free, shutter count notwithstanding.
  • Likewise, Nikon is not fixing your used camera, even its original sale was within 2 years ago, or even if the shutter failed at 8,000.

It’s all marketing.

By the way, when Nikon was coming up with its 150,000 exposure MTBF, that was 4,166 rolls of film, which was more than most people shot in their lifetime. For a pro, a new shutter (which in those days was a $250 repair) cost nothing compared to the cost $12,000 in film you shot before you got there!

Opiates of the masses: bokeh

26.jpg

As close as you will ever get to bokeh with the Konica Genba Kantoku DD (@40mm)

[2008-11-02] I have heard only one good argument for hunting marine mammals to extinction.  It came from my friend Leo, who pointed out that mammals spent millions of years evolving from sea life – so what kind of perverse animal wants to go back to the ocean?

The idea of perversity comes to mind when people criticize current optics as being attacked as “too sharp,” “too contrasty,” or having “bad bokeh.”   This seems to happen most with new rangefinder optics coming out of Leica and Zeiss.

As a preliminary matter, it is totally OK to buy a previous-generation lens because it is all one can afford (or all one wants to spend for a particular focal length).  But now that we have that out of the way, let’s talk about the seals and the whales.

The inexorable tide of history

Query whether at any point in optical history any optical designer pulled back because a design exhibited too much sharpness, too much contrast or too little uncorrected spherical aberration.  To the contrary, if Berthele, Berek or Mandler had been able to incorporate mass-produced aspherics, they no doubt have been building aspherical Summicrons and Summiluxes instead of Sonnars, Elmars or 35mm pre-aspherical Summicrons.  By the standards of yesterday’s optical designers, today’s multicoated, aspherical, retrofocus wideangles would seem like gifts from the gods.

One can always dumb-down a lens that is sharp or contrasty by stopping it down until it diffracts, using a softening filter, diluting your developer, going down a grade in optical printing, changing the RAW development curve, or even simple mis-focusing.  If you are consistently do the opposite of any (or all) of these, you probably really want a lens that is sharper and more contrasty.  One would wager that of all of the Photoshop or Lightroom controls, the most popular are the ones that make pictures more snappy.

Some people would make the argument that lower-contrast optics maximize dynamic range on digital cameras, but this is an argument that only carries water in scenes with 500:1 contrast ratios – and even then would assume that anything of interest lay in the shadows (hint: take a look somehow how JPG compression is set up – to preserve highlight detail, which perceptually is where the interest generally is).  Uniformly low-lighted scenes generally call for higher-contrast lenses because those scenes actually have a very limited brightness range.

Bokeh or baka?

If the justification for looking at old lenses is “bokeh,” question why it is even a concern.  Bokeh seems to have become an end only in the past 15 years – and it is legitimate to question why it merits so much internet bandwidth.  My personal observation, based on the existence of things like the Nikon Thousand and One Nights site, is that it originated in the nostalgia of some older photographers in Japan: “When I was 18, I really wanted a Nikon SP…”

But there are practical reasons to ignore the bokeh question altogether.  First, most of the discussion of bokeh seems to revolve around the use of lenses 50mm and shorter (or 35mm or shorter on a camera with a crop factor) for purposes of taking close-range pictures.  Many of these pictures just as easily could be taken with  lenses twice as long at twice the distance (example: a portrait at a meter),  Consider that:

– A 50mm lens (on a 35mm camera) at f/2 and a meter has a depth of field of 36mm (about 1.5 inches)

– A 90mm lens (on a 35mm camera) at f/2.8 and 1.8m has a depth of field of 50.6mm (about 2 inches).  Even shot at f/2 (assuming it has that aperture), it would still have 36mm depth of field.

With a longer lens, one is not crowding human subjects or hitting their faces with the unflattering distortion that comes with short lenses.  And we don’t see systemic complaints about bokeh with longer lenses (no doubt because with four or five elements they are less corrected in general), so if one has the light to use one, why not?  What’s that you say?  You don’t have enough light?  Can’t afford a telephoto?  Even if your only available optic is a short, fast, hypercorrected aspherical lens, the look of the background can be vastly improved by manipulating the relative distances from camera to subject and subject to background.

Second, many photographers appear to emphasize (and rely on) bokeh to make up for what are really severe compositional defects in photographs (point light sources in frame, relatively busy backgrounds, etc.).  The use of bokeh for this purpose goes hand-in-hand with the “wide-open, close-up” school of photography that not only leans on bokeh to tidy up backgrounds but also uses shallow depth of field to increase interest in what ordinarily would be unremarkable subjects.  Shooting with a camera on shutter priority is an excellent discplinary exercise.  With far less conscious control over depth of field, one composes far more carefully.

Finally, perhaps best way to forget about bokeh as a factor is to ask oneself just how many of the great pictures in history were ruined due to bad bokeh.  The answer is is, “none.”  No one even thought of the concept until the late 20th century, and it is arguably more wrapped up in romanticism than anything that has ever been validated as sound photographic practice.

Nikon SLR Accessory Finders

moonlanding.jpg

An action finder can be really useful for situations where it is hard to look into the viewfinder – like when you are wearing a space helmet.  Or oversized Italian sunglasses.  This is a picture I took with my DA-20 on a recent vacation.

Introduction

This article [2007] came about because everything I have seen about accessory viewfinders seems to have been cut and pasted from manufacturers’ literature.  This article will (hopefully) help you determine whether you should use one or more of these.  Remember: Nikon sold one accessory finder for every 1,000 F-series bodies.  Although this is a convenient excuse for why the F6 has a fixed prism, it also should tell you that most people learn to live with the standard pentaprism that came with their camera bodies.

Action Finders: DA-2, DA-20, DA-30

The action finders are all huge and heavy (so not for wimps), but they give you some flexibility – like not having your camera jammed in your face.

In an SLR system, eye relief and magnification are closely related concepts.  The higher the eyepoint, the greater the distance the entire frame can bee seen from the eyepiece. The greater the eye relief, the lower the magnification.  The Nikon action finders are designed around an eye relief of 61mm (2.5 inches); the magnification is 0.6x.   Contrary to popular myth, an action finder does not produce a big, “TV-like” image.  It simply lets you see the whole viewfinder from a little bit further back.

Can you use an action finder all the time?  Yes and no.  Because it lowers magnification, the action finder makes it a little more difficult to use telephoto lenses.  If you are relying on focusing screen aids (such as split-image rangefinders, microprisms, etc.) or autofocus, the lower magnification won’t have much impact.  If you use groundglass focusing, life gets a little harder.

Do you need the expensive rubber eyecup?  Yes.  Beware of all the action finders missing this useful part.  Your eyeglasses are not in danger from the action finder eyepieces; rather, the rubber eyecup keeps your eye at roughly the right distance from the viewfinder.

Every viewfinder really has only one eyepoint: the eye position where the whole viewfinder is visible.  Nikon’s high-eyepoint pentaprisms are designed to focus when eyeglasses are pressed up against the eyepiece.

This means that diopter correction is relatively simple: you just pick the correction lens (or setting on an F4, F5 or F6) that works in one position.  You may notice that you use different viewfinder corrections for glasses and contact lenses with the same prescription; part of this is the difference in distance from the camera’s viewfinder system.

With an action finder, your eye could be anywhere in the range from right against the eyepiece to the magic 61mm from it.  Although this does not seem like a very big range, your eye works very hard to see the focusing screen as the distance increases and diminishes – much the same way that a camera lens needs to extend or retract much more when it is focusing on a close object.  The rubber eyecup keeps your eye at the “right” distance: the one where the average eye can focus comfortably.  If you don’t use the eyecup and press your eye up to the finder, you might find your eyes a little bit fatigued after a while. Unfortunately, the usual solution for this problem is absent: the action finders have no built-in adjustment and there are no accessory diopters.

The F3 action finder (DA-2) meters the same way that the F3 standard one does – it doesn’t.  On the F3, centerweighted ambient metering and centerweighted TTL flash are measured by a sensors in the camera body.  The body of the finder is made of brass.  The eyecup is rectangular and snaps on over a large rectangular plastic frame on the back.

The F4 action finder (DA-20) gives you a choice of centerweighted or spot metering via a switch on the side of the prism (like the DP-20).  The DA-20 outer housing is plastic.  It features a normal TTL hot shoe (no locking pin).  The DA-20 has a similar eyecup to the one on the DA-2. The DA-2 provides an abbreviated viewfinder information display (the lower display is actually part of the DP-20, not the F4 itself)

Exposure mode Small window (left) ADR window (center) Focus ind.
P or P HI “P” + auto-selected shutter speed Minimum aperture of lens (or other aperture and “fEE” in left window) Minimum aperture of lens (or other aperture and “fEE” in left window)
S Auto-selected aperture Minimum aperture of lens (or other aperture and “fEE” in left window) Minimum aperture of lens (or other aperture and “fEE” in left window)
A “A” + auto-selected shutter speed Aperture set on lens Minimum aperture of lens (or other aperture and “fEE” in left window)
M Shutter speed + reading of how off from normal exposure (e.g. +2.0) Aperture set on lens Minimum aperture of lens (or other aperture and “fEE” in left window)

One variation of the DA-20 (which I assume was made for underwater work – and which I stupidly returned to KEH) has a built-in illuminator for the lens aperture ring.  It comes on whenever the meter is on, so watch your batteries.

The F5 action finder (DA-30) gives you matrix (not 3D or color), centerweighted or spot via a similar switch to the one on the DP-30 (standard F5 finder).  Its body is made from a crinkle-painted l.ght alloy.  It has a locking hot shoe.  Given its functionality, I suspect the DA-30 shares its electronics with the DP-20 (the F4’s standard finder).  The DA-20 also has a similar eyecup to the one on the DA-2.  You get all of the same viewfinder information that you get with with the DP-30 (standard F5) prism.

Magnifying Finders: DW-4, DW-21, DW-31

Magnifying finders are fun.  They eliminate the light loss from the pentaprism and give you a magnified (6x) view of the whole focusing screen.  Distortion is very low.  These have very low eyepoints and are designed to be used without eyeglasses (precisely why the Nikon magnifying finders have correction from +3 to -5 diopters built in.  Once you press your eye all the way in, it’s a revelation.  These have three (by my count) multicoated elements.

Magnifying finders are very useful with standard groundglass focusing (D-screen) and with astrophotography (M-screen).  You can actually use them for anything with the sole exception of (1) situations where you need to keep the camera high (at eye level) and (2) situations where you lose track of left-to-right movement. The latter is related to the fact that all magnifying finders reverse the view left to right.

The DW-4 (F3) gives you centerweighted ambient and TTL flash metering.  The DW-21 (F4) and DW-31 (F5) give you spotmetering for ambient and for flash.  The F4 and F5 magnifying finders require the oddball SC-24 TTL cord, which plugs into an eight pin connector on the back of the finder.  I am not sure why the first flash needs eight pins, since the hot shoe only has five pins (three dedicated, one hot shoe contact, one shoe).  The SC-24 terminates in a standard Nikon TTL hot shoe.

Magnifying finders (and waist-level finders) seriously impede taking vertical shots.

Waistlevel Finders: DW-3, DW-20, DW-30

First it killed the Rolleiflex.  Now it’s killing me.  35mm SLRs started with this type of finder; thank heavens it didn’t survive in  the mainstream.  The pentaprism displaced the waist-level finder – and the fact that a pentaprism shows everything correctly, right-side up and correct left-to-right, and not brightness, carried the day.

Today, the waistlevel finder has only three real uses: shooting above crowds, shooting from low angles, and shooting on a copystand.  The DW-3 (F3), DW-20 (F4) and DW-30 (F5) are essentially the same thing: just a popup hood through which you look at the top of the naked focusing screen from a foot or more away.  This makes manual focusing difficult and pretty much defeats any focusing aid in your focusing screen.  Things are better with the autofocus cameras.

Each has a small 5x magnifier that provides a small, highly distorted view of the center of the focusing screen.  While this is sufficient for copy (and some macro) work, it is pretty unpleasant for general use.  This is no different from a standard Rolleiflex TLR viewfinder.  The only reason people tolerated it on Rolleis was that in the olden days, medium format pentaprisms were so dark as to be useless.

Metering and TTL flash are similar to the magnifying finders.  The F4 and F5 versions use the same TTL connectors that the magnifying finders do.

The principal virtue of the waist-level finder is that it is cheap, simple, compact, and lets you do a couple of unique things.  If you don’t do those things, skip this type of finder.