Archive | Cameras – Rangefinder RSS for this section

The 51.6% solution

This is just a quick note on a technical problem that plagues digital Leica cameras when used with older Nikkors: back focus. It is gratifying to know that Leica has finally recognized that many of its lenses don’t work so well on digital Ms due to “focus errors” that allegedly compound over the years. The real reason is probably more that film planes are actually and unintentionally curved, and a lens that makes the grade at the center there back-focuses elsewhere.

I was struggling a bit with a 10.5cm f/2.5 Nikkor, which though absolutely lovely aesthetically is one of the worst-engineered Leica lenses ever from a mechanical standpoint. And it back-focused. It back focused more with some Leica M adapters than others, but still.

Strike one with this lens is that the aperture unit rotates along with the entire optical unit. This means that if you adjust the collimation washer (for reasons I don’t fully understand, it’s always 0.05mm needed with any lens – just about the same thickness as Scotch tape), you also then have to reset the aperture ring to read properly. Also not 100% sure that infinity optical focus was really the problem.

Strike two is that the amount of front cell movement needed to compensate for back focus is absurdly great. So here, you’re messing around with focal length, but this the same way the MS-Optical Sonnetar gets calibrated…

Strike 3 is that the RF cam is not adjustable at all, with the tab pushed by a plunger running on a wheel that fits in a spiral track in the helicoid. Guess how this tab was adjusted for infinity at the factory? With a file. It makes sense, in a way. Calibrate the fixed infinity point on the focal plane by shimming the optical unit, calibrate focus at infinity by grinding the RF tab, and fix close focus by shimming the front cell. But it utterly sucks when you find out, 60 years later, that the tolerances that looked good on film with a Leica IIIc look like holy hell on digital.

So when you are dealing with focus errors, you have to imagine that the standard is a 51.6mm lens. At that focal length, if the RF matches the film-plane focus, the focus will always be correct, even if the infinity stop of the lens is beyond “infinity” on the scale.

For a telephoto lens, the rear cam still pretends it moves like a 51.6mm lens, but the actual optical unit moves much further. Hence, in a lot of cases, you can simply use a thinner LTM adapter (I think I’ve written about this before… somewhere). Most cheapo ones are thinner than the 1.0mm they are supposed to be.

But there is a different way to hack this with the 135mm, 105mm, and 85mm Nikkors: simply apply a thin and even coat of clear nail polish to the RF tab on the lens. This is a trick that you could theoretically do with lenses that have a rotating RF coupling ring (not tab), but it works exceptionally well with the Nikkors because the camera’s RF roller simply rests on the tab and doesn’t roll along it. This means that you only need to get the coating thickness right over a very short distance. Materials needed:

  • Sally Hansen clear top coat (not “nail nourishing,” just the hard kind).
  • CVS Beauty360 brand Nail Polish Corrector Pen (essentially a marker full of acetone that you can use to thin or remove extra nail polish).
  • LensAlign focusing target (if you own a Leica, you really want one of these anyway, just to figure out what the devil all your lenses are doing as you stop down).
  • Reading glasses.

So basically all you need to do is put a very thin coat of polish on the polished surface of the tab. Let it dry for 20 minutes. Here is the goal:

  • At f/2.5, your focus should be such that the 0 point is barely focused, with most of the DOF in front.
  • At f/2.8, your focus should be dead-centered around 0. The lens is actually way sharper here than at f/2.5. Doesn’t seem like much of an aperture change, but it is.
  • At f/4, your focus will be such that 0 will barely be in focus, with most of the DOF to the rear.
  • From f/5.6 down, the DOF will grow so that 0 is always in focus.

If it works, you’re done. The focusing errors this might induce further out are subsumed by depth of field increasing. If you need another coat, add one. If you are now front-focusing too much, use the Corrector Pen to remove some of the extra (or use a very fine nail buffer to remove some).

Never file or try to grind down the tab if your lens is front-focusing. Unless you can do it totally square, your lens will behave differently on different cameras. Leave this situation to a pro.

Konica 35/2.0 L/UC Hexanons

uc35f2-1
The above is #0000 of the UC; Fujisawa-Shoukai (which commissioned the lenses) gave me explicit permission, back to 2001, to use this product picture for non-commercial use. This isn’t a commercial site, and F-S is gone from this earth, so here we are!

This is an article originally written in 2001; with a lot of updates.

How did these things get started?

The former Fujisawa-Shoukai had quite a bit of pull over Konica. Recall that by 1992, Konica had made what was seen as its last serious film camera, the Hexar AF, with its legendary 35mm f/2 lens. F-S, as we will call it here, commissioned in 1996 a run of Hexar lenses in Leica thread mound (LTM). This was long before the what people in the U.S. called a “rangefinder renaissance;” in fact at the time, very little in LTM was being produced in Japan, with the exception of the Avenon/Kobalux 21mm and 28mm lenses.

The first product of this program was the 35mm f/2L Hexanon, which looked like this:

IMG_0644_2.jpg

This lens is simply a clone of the Hexar AF lens, right down having the same filter size. The coatings look identical, which is not a surprise. Consistent with some other contemporaneous LTM products, it did not have a focusing tab. On close inspection, the scalloped focusing ring looks like that on a Canon 35mm f/2 rangefinder lens, or more contemporaneously, the 21mm Avenon/Kobalux lens. The chrome finishing on an alloy body is reminiscent of modern-day ZM lenses. None of this, of course, will disabuse you of the notion that the Japanese lens production industry revolves around common suppliers. This lens shipped with a black flared lens hood (no vents) and a bright sandblasted chrome “Hexanon” lens cap that fit over the hood.

F-S would then go on to commission the 50/2.4L (collapsible) and 60/1.2L Hexanon lenses. The latter is famously expensive now; I have an email from F-S where it was 178,000 yen (about $1,400). The 50/2.4 will get its own article here.

In 2000, around the time that Avenon was re-releasing its 21mm and 28mm lenses as “millennium” models, F-S had another run of the 35/2 made. These were at least superficially different from the silver ones:

  • At the time, black paint was all the rage, so the lens was executed in gloss black enamel and brass. The enamel in the engravings is almost exactly the Leica color scheme.
  • The filter size decreased to 43mm, the aperture ring moved back, and the focusing ring thinned out to give the impression of “compactness” and justifying the “ultra compact” – UC designation that was historic to some Konica SLR lenses.
  • The focusing mechanism changed to a tab (which helped justify the thinner focusing ring and lighter action).
  • The coatings changed to a purplish red to help support the notion of “ultra-coating.” As you might know, multicoating can be customized for color.

The close-focus distance (what would be the third leg of a UC designation) and focusing rate of the helicoid (0.9m to ∞ in about 1/4 turn) and overall length did not change. The new lens was priced at 144,000 yen, which in dollars would have put it at just under the cost of a clean used 35/2 Summicron v.4 (at the time, these ran from about $700-1,200) and about half of what a Leica 35mm Summicron-M ASPH would cost.

Handling versus Leica lenses

Since both of these are optically identical, it might make more sense to discuss the ways in which these are similar to, or different from, the vaunted Summicron v4 King of Bokeh License to Print Money®. They are both like the Leica version but in different ways.

The UC has the same smooth tab-based focusing as the Summicron. It is very smooth and fluid. That said, the aperture ring is very “frictiony.”

The original L has a focusing feel a lot like a Canon RF lens, owing to the similar focusing ring, which has more drag and no tab. The aperture ring, however, has the same “ball-bearing-detent” feel as the Leica.

The overall length of all three lenses is similar, though as noted above, there is something of an illusion that the Leica and UC are smaller than the L.

Optics

The Konica lens, like the Hexar lens it was based on, is a clone of the 3.5cm f/1.8 Nikkor rangefinder lens, but for all practical purposes, the Hexanon is the same lens as the Summicron 4. As you can see, there is a very smooth falloff from center-to-edge wide open and pretty much eye burning sharpness at f/5.6,

Whoah. That looks familiar! Below is the Leica 35/2 v4 as shown in Puts, Leica M-Lenses, their soul and secrets (official Leica publication). Except the Summicron’s optimum aperture is a stop slower.

On interchangeable-lens bodies, all three lenses have the same focus shift behavior, requiring a slight intentional back-focus at f/2 and front focus up to f/5.6. It’s not like on a 50 Sonnar, but it’s there.

Should I?

The original chrome version is a lovely lens and a nice match for chrome Leicas, at about 1/3 the price of a chrome Summicron v4 (yes, they exist…). If you like Canon lenses, you’ll be right at home with it. On the other hand, the UC version is smooth and sexy but getting to be as expensive as a 35/2 Summicron ASPH, which is actually a better lens.

Take a stress pill: shutter actuations

What is the maximum shutter actuations for the Nikon D700 [or Leica M9 or whatever]?

There is nothing such as “maximum shutter actuations.” People act as if there were some magic number. People freak out about this. The rated number is unlikely to be reached for most amateur photographers. It’s unlikely to be reached by two amateurs using a camera back to back. Maybe even three or four, unless one used the camera at the beach or somewhere gritty.

  • The rating itself is the MTBF, or Mean Time Between Failures. That means that on average, Nikon’s rated shutters last 150,000 cycles. You don’t know whether that means most last to 250,000 and relatively few go 50,000 or whether all of them are somewhere around 150k.
  • There is no warranty that a shutter will get to 150,000. Your two year factory warranty will expire one day, and it could be at 18,000 exposures or 180,000. Doesn’t matter. Nikon is not fixing it for you for free.
  • Inside the factory warranty, Nikon does fix it for free, shutter count notwithstanding.
  • Likewise, Nikon is not fixing your used camera, even its original sale was within 2 years ago, or even if the shutter failed at 8,000.

It’s all marketing.

By the way, when Nikon was coming up with its 150,000 exposure MTBF, that was 4,166 rolls of film, which was more than most people shot in their lifetime. For a pro, a new shutter (which in those days was a $250 repair) cost nothing compared to the cost $12,000 in film you shot before you got there!

Leica M: that distinct feeling of ennui

Smithers: “They’re fighting like Iran and Iraq!”
Mr. Burns: “What?!”
Smithers: “Persia and Mesopotamia.”

[Written April 16, 2012] All over the world, there are provincial towns believed by their residents to be equal to New York City, Tokyo, or Paris. In a way, Leica M might be such a town. Leica (the company) is not so myopic in terms of technology, but for whatever reason, digital M arguably has become both a technological and a cultural backwater. As Carlo Levi would have put it, Cristo si è fermato a Solms.

The duality of Leica
As this author has observed it over a 15-year period, M culture is basically drawn from two groups (a) people who put up with Leica’s quirks and price due to a belief (often justified) that the resulting image quality is better and (b) a group of photographers cool to modern technology and suspicious of the idea that in spending tens of thousands of dollars on a system, someone might want features that make an M look more like a practical “only” camera. We can call the first group the Opportunists and the second group the True Believers.

Surmising what you can surmise about them, the Opportunists are fairly mobile between camera systems. In fact, given Leica’s cyclical appeal, this group largely abandoned Leica’s system in the early 1970s and abandoned it again when Leica was dragging on a digital body in the early 2000s (recall how lens prices fell back then). Despite claims that demand for M9 cameras and lenses outstrips the ability to produce them, production is small – and even so, the market price for used M9s has now drifted to 60% of new prices. Even new cameras are being discounted by designation as “demos” (no camera that was really used as a demo has five or fewer exposures on it). We know from this that there are definitely fair-weather fans and that they are starting to head for the doors again. When things change precipitously, we know the Opportunists are on the march. And some Opportunists march by keeping their M8s and simply supplementing their missing capabilities with D700s and X100s. The effect, however, is the same – that they stop buying brand L and begin experiencing the forbidden fruits of other manufacturers.

The True Believers – a smaller group but more influential with Leica’s management – hold that the world stopped producing useful new camera features in about 1986 (or, alternatively, in 2002 with the M7). For that reason, they believe, Leica M must be locked into a world of vestigial and functionally-useless removable baseplates, frameline preview levers, and ergonomics lazily whittled from a bar of Ivory soap. The True Believers deny that any feature a Leica M currently lacks is significant, desirable, or valid. Their faith is strong despite the fact that Leica itself has proven them wrong by introducing the very things True Believers claimed were nonessential to the M system: film backs that opened, lever winding, combined rangefinder/viewfinders, TTL metering, electronic shutters/autoexposure, TTL flash, and ultimately, digial imaging. For this group, the M9 – which emerged years behind technologically – is “enough.” In fact, it is already too much (one dares not speak of the D-Lux, the Digilux, the S1, the S2, or the DMR – all of which were actually cutting edge when released). [One would note that since this article was written, that this faction won and got the M10 into production, omitting some features that had been included in the intervening M typ 240/246.

When things run their commercial course, we can call them effectively obsolescent. Obviously, nothing actually stops taking pictures (or anything else) when it is superseded by newer, flashier products – or even products with better specs. But new products often do the same thing with more speed, better efficiency, or fewer avoidable annoyances. The world is littered with well-built, well-designed items that should have lasted forever in the market but were passed up by things that were simpler, cheaper, or more appealing to the masses. Fountain pens, for example, a durable, perfected designs that are largely ignored for cheaper, less messy Bic Biro ballpoints.

When it comes to cameras (or anything), this author would take it a step further and point out that that is not fair to judge an older product for lacking features that had not been invented when it came out (and this is being charitable where Leica did not, for whatever reason, implement technology that was available at the time). So talking about digital M, let’s leave aside things like live view and video. Let’s even forget about DSP speed, screen density, and frame rate. But it is fair to compare apples to apples: to take the core features (or selling points) of an old product and examine their uniqueness in the marketplace and whether they are necessary or desirable solutions to problems.

The five points of Leicas

Leica cameras have five big selling points: high sensor quality; high lens quality, a great synergism between the two, a superb optical viewfinder and a superlative mechanical rangefinder. Take them in turn:

1. Sensor image quality.

Image quality is really the reason why serious photographers buy Leicas. The Leica magic (at least at the body level) comes from two things: (1) lack of an antialiasing filter, which gives a perception of an additional 25% in resolving power (or the ability to up-res by a like amount) and (2) image processing algorithms that build a unique look. These huge determinants of quality do not depend on the overall build quality of the camera body; they reside entirely in a CCD sensor and a couple of hundreds dollars in electronic parts. As long as the same glass formula were put in front of this sensor, the end result would be identical, even if the body were ABS plastic and even if the lenses operated by autofocus.

A lot of things have happened in the 7 years since the basic digital M technology arrived. First, other manufacturers have caught up to the filter-free sensor (Kodak actually preceded Leica with many models in which the AA filter was absent or removable). Sigma has the Foveon sensor, which omits it. Fuji has the X-Trans CMOS sensor – which in addition to lacking an AA sensor, has a randomized color pattern that obviates the anti-moire processing that bogs down Leica’s cameras. Nikon put a weak filter in the D3 and D700, and the D800E effectively has none (as well as twice the pixel density and much better low-light performance than current Leica sensors). Ricoh is making GXR modules that take Leica lenses and have no AA filters. And the Leica “look,” while challenging to replicate, can indeed be achieved in relatively cheap software like Lightroom.

But backing up a little, the world has also moved away from CCD in favor of CMOS chips for lower power consumption, higher sensitivity, and live view capability. Sticking with CCDs constrains Leica’s sensor choices for any future digital M (unless Leica changes the imager completely) and puts Leicas at a long-running disadvantage in higher ISO performance. CCD chips do have great color, but so do a lot of CMOS chips. In the end analysis, slipping behind the sensor speed curve is a big issue; the number of megapixels, not so much.

2. Lens image quality.

Leica was an early participant in the Lens Speed Wars that started in the 1920s and 1930s. Back then, you needed superspeed lenses because film was rated at a blistering ISO 12. And let’s be clear here: from about the 1960s onward, Leica was pretty much unchallenged in terms of lenses, in the build, quality control and resolving departments (and in many ways still is). But a few funny things happened on the way to the 21st century.

When the world went digital and addressed low-light situations by upping sensor capabilities, Leica instead focused on simply making faster lenses. Although this technically gets to a correct exposure in a lot of situations without upping sensor performance, it also locks users into what could be called the “Noctilux Aesthetic,” shorthand for pictures where there is a razor-thin plane of focus and often heavy shading of the corners. Some people prefer to do things with higher ISO sensitivity (rather than wider apertures) so as to have more things in focus. And if it’s the aesthetic that appeals, there is always Instagram.

Leica’s drive to make faster lenses made lenses for a compact system heavy, large, and insanely expensive (a 24mm f/1.4 Summilux, for example, costs $7,000). An M9-P and a 24/1.4 will run you approximately $14,000. A D800E with a 24/1.4 Nikkor runs about $5,500 – and can either shoot in a quarter of the light with the same noise or the same light with four times the depth of field. Sometimes it is nice to have the luxury of choosing the method of taking low-light pictures. Although the expense is typically met with the refrain of, “it’s expensive because it’s good,” or “it’s not for everyone,” it is worth pointing out that many of the nouveau riche who buy things like Leicas did not get there by spending money just to spend money- cost/utility analyses go on all the time (albeit among much more expensive products). In units produced annually, Leica M9 production is about equal to the M6 – though the number of eligible buyers in the world has increased radically. Leica’s sales are up in China, but with flat overall volume, that means that they are diminishing in other parts of the world.

Leica M lenses have very limited options for addressing focus shift [with the exception of partial corrections like the 35mm f/1.4 Summilux-M FLE]. All lenses exhibit focus shift when stopped down, and this can make rangefinder focusing more inaccurate than it should be. Digital has less tolerance for error, and the only ways to mitigate focus shift in fast lenses is to use floating elements and aspherics, both of which – when executed to Leica standards – cost a mint. Closed-loop focusing (in the guise of contrast-detection AF) allows things like the $600 35/1.4 Fuji X lens (for the X-Pro1) to perform comparably to the $3,500 35 Summilux ASPH. But even before that, the lowly Hexar AF was able to keep up with the legendary 35mm Summicron ASPH by adjusting its focus to account for the selected aperture.

Leica’s 20th-century lenses hold the digital M system back. Users often fixate on speed, but older, high-speed lenses are not world beaters (though many people pay those types of prices for them). The 75mm Summilux command prices that are more driven by rarity than its relatively humdrum performance on a flat sensor (or the somewhat provincial appeal of shooting a portrait with just the eyelashes in focus). Even some of Leica’s more innovative designs like the 28-50-35 Tri-Elmar are fairly unremarkable performers on a Leica digital. The standards required to make a good digital lens are far more exacting than what made superlative film lenses in the past. There are always third-party lenses, but sometimes it seems silly to attach a $300 lens to a $7,000 body.
None of these are show-stoppers, but they tend to paint Leica M into the corner of being a very specific solution to any given problem. And getting to the place where a Leica M optically outperforms the competition requires very expensive gear.

3. The synergy.

One thing about Leica M was that for a long time, you had to use a Leica body to get the Leica M lenses. This was due in part to patents on the lens mount. Even where other manufacturers made M-mount cameras (like the Minolta CLE, Hexar RF, Bessa R, Zeiss-Ikons, and Rolleis), Leica always had a little bit of an edge due to its huge and wide pressure plate. Today, though, the entire synergistic advantage of using a Leica lens with a Leica body lies in the microlens pattern on the Leica sensor glass. It is not a perfect solution, but it is currently the only way to get the Leica resolution all across the board – and on a 24x36mm sensor. All of that said, the synergy between Leica lenses and bodies really only matters if you assume a Leica M lens to be an essential part of the equation. Where other cameras are built as a cohesive unit (lens and sensor), the 80/20 rule kicks in (80% of the performance at 20% of the price). Only here, Leica’s pricing now pushes that toward a 90/10 proposition.

4. The optical viewfinder.

One of the big points of excitement about the Leica M is its big, clear viewfinder. Though Leica fields the brightest and least-distorted finders in the industry, those finders are expensive to produce and, given the mechanical nature of the framelines, are incapable of showing accurate framing except at one arbitrary distance. This tends to make shots frame looser than they should be, thereby wasting real estate on the sensor. Japanese manufacturers have not surpassed the Leica clarity, but they have managed to produce close equivalents for much less money. But the bigger issue came with the rise of hybrid viewfinders that use LED overlay displays to (a) show instant playback; (b) project a digital level and composition gridlines; (c) display a computation of the depth of field based on focal length, aperture, and focused distance; and (d) show field-corrected framelines appropriate to any focal length. This is to say nothing of allowing an instant TTL lens view as well. These features – which can universally be shut off – add a considerable amount of utility for people who want them. They don’t take away from the beauty of the Leica version, but one line of 8-segment LEDs provides no warning about running through an SD card or a battery, two conditions that did not really exist when the viewfinder was last redesigned, 10 years ago. In the end, the major compelling feature of that Leica view is…

5. The rangefinder

Part of what makes the Leica M is the rangefinder. Leica Ms will always have rangefinders, because the “M” actually stands for Messsucher (rangefinder). When the Leica II was developed, there were no small SLRs. Leica and Zeiss based their competing 35mm cameras on coupled prism rangefinders. This was, at the time, the only technology that allowed a compact camera to focus accurately, particularly with high-speed lenses.

Even when 35mm SLRs came into the mainstream in the 1950s and 1960s, rangefinders persisted. Rangefinders were smaller in general, and it was easier to make wide-angle lenses for them. Back then – and now – rangefinders also did a better job of focusing those wide-angle lenses. Where a rangefinder system has a constant magnification and starts running into problems with longer lenses, SLRs benefit from assuming the magnification of telephoto lenses they use.

Many competitors have made runs at matching the Leica rangefinder, and the common vendor to Fuji, Mamiya, and Konica almost managed to do it. The Leica mechanism is a wonder of precision and high-end manufacturing. Today, though, it seems like a precisely engineered, laser-engraved, CNC machined, hand-honed … typewriter. The rangefinder’s competence is in focusing wideangle-to-normal lenses – but run-of-the-mill autofocus is just as good at doing that.

The weight

Aside from struggles with relevance to Opportunists at a core technology level – i.e., creeping effective obsolescence – Leica M carries a lot of baggage. The weight (all apologies to Rick Danko and Robbie Robertson) goes beyond simulating the size and weight of a camera of 1953 (the weight is, in fact, simulated – the brass covers of a digital M account for almost 25% of ite weight). It goes beyond doing things they way they have always been done – in the name of tradition. It goes beyond being accosted in public by weirdos who recognize your M8 as “an M4.” To this author, the most perfidious part of it is the cognitive dissonance that arises when one carries $10,000 in gear around his neck but fancies himself to be a photographic Zen Buddhist.

Leica used to think outside the box – not only did it popularize 35mm film photography, it also invented things like phase-detect AF, made innovative cameras like the M3, and otherwise kept up with the world (even Leica’s current S2 is technological light-years ahead of the M). Had this progressive philosophy carried over into the M series (or an updated successor), the M8/M9 would not have slavishly copied film cameras in looks, live view would have been added to stand in for the Visoflex, and it would have been Leica to introduce hybrid viewfinders. Maybe this will change on May 10, 2012 with some huge product announcement [it did not, but the M typ 240 did introduce the use of electronic viewfinders – EVFs – to Leicas].

But in our hearts, we know it won’t. The world of Leica is somewhat frustrating. The products are high quality, the resulting images are excellent, and the general solidity of the system makes all of us keep our lenses as we repetitively upgrade digital bodies (and upgraded film bodies before that). We always want to think that some vastly improved new M is around the corner, yet ultimately, we just end up settling for something that is behind the curve, for a lot of money. One could get the sense – reinforced by the rapid pace of the rest of the photographic world – that this bubble of IR filters, color vingetting, bottom-plate loading, and black paint is going to burst.When you look at things like the Fuji X-Pro1, you begin to think that perhaps it already has. Maybe the better thing would be for Leica to declare victory in 2013 after 60 years of M – after all, it outlasted Contax, Alpa, and everyone elese’s film rangefinders (and even outlasted Polaroid, Kodak, Agfa, and Ilford…) – and reboot with something as earthshaking as the M3 was in 1953.

Disclosure: the author has been a Leica user for the better part of two decades and was an early adopter of the M8 [and M240, and M246].

No love for the Empire? Leica Multifunction Handgrip M 14495

M-EQUIPMENT-MULTIFUNCTIONAL-HANDRIP-POWERFUL-PLUS_teaser-960x640

The Multifunction Handgrip M (14495), $895, is a depressing piece of hardware. It’s not the price or the alleged GPS slowness. It’s the depressing feeling that like a lot of things, the M camera reached its highest point of elaboration and now is on the path of decontenting that hit a lot of other types of consumer electronics.

Hello and goodbye. The story of this product is wrapped up with the M typ 240 (and its cousins the M-E 262 and Monochrom 246). The 240 was a watershed moment for Leica – the first time the M had actually become functional like other people’s cameras. It signaled a few firsts:

  • Video. Not the best HD video ever, but with the new EVF(!) it was passable.
  • Audio input. Plus it actually had a way to get audio into the camera! But no EVF and mic adapter at the same time. In every life, some rain must fall.
  • A digital horizon that operated in 3 dimensions (so it could detect pitch and roll).
  • A high capacity battery.
  • A function button on the front that could trigger exposure compensation adjustments or viewfinder magnification.

How many of these features made it to the M10? The front button. Now let’s see where the Multifunction Handgrip takes you:

  • GPS. Every want to auto-tag your photos with the location?
  • SCA flash connector. Now you can connect to a flash via a metal plugged-cord or a standard PC outlet.
  • AC connector. Now you can run your camera on video for the allotted 29 minutes at a time (before the auto shut off).
  • USB port for tethered operation (likely why the AC connector is so important).

But then there came the M10, thin like a 90s shoulder pad. No more video. No more need-to-keep-it-level landscape photography (apparently…). Smaller batteries, as if the thrill of living had gone.

Weight? The 14495 adds surprisingly little weight to the M. That’s because everything but the baseplate part is plastic. Naturally, the light grip does not change the balance of the camera, so you need to use brute strength (and grip) to keep big lenses level.

Grip? The ergonomics of this are something that grow on you. At first, you feel like it could be a centimeter taller to accommodate your index finger. But wait – that’s the one you need to press the shutter. It doesn’t take long to adapt to this grip, and it greatly enhances the handling of the camera with huge lenses like the 75/1.4. Every little bit counts, and an M is pretty slippery, even with the little nub grip built into its case.

GPS? It works. Just put your camera in standby, and within a few minutes, it will get a fix. Once it’s running, it seems to be pretty accurate.  A lot of people seem to complain that when it loses a signal, it continues to log its last known location. That’s actually beneficial when you go indoors (since you don’t want it to revert to a location in the center of the earth, for example).

“Near-field” communication. You always wanted this on a digital camera, but you didn’t want Android. Well, here you go. To get a wifi signal out of a card (like the Toshiba Flashair, which will be treated in a future installment), you basically need to have your handheld touching the top plate of the camera (which apparently is the most porous surface for radio waves.

Flash. Flash. Flash. So you want to know how well the 14498 SCA setup (another bazillion dollars) works? It consists of a bracket and an extension shoe. The idea of this product is to allow you to move the flash off camera both to enhance balance and to free up the hot shoe for an optical or electronic viewfinder.

 

M-EQUIPMENT-SCA_ADAPTER_SET_teaser-960x640

The disappointing thing is that there is no vertical grip piece, meaning that your flash head is much closer to the lens axis in landscape mode than you might like. So this works better out of the box with taller flashes like the SF 58 or 64.

The weird thing is the SCA plug, which is both unusual and insanely well built. It probably requires 200 different machining operations. But like the EVF connector, it’s proprietary, meaning that you have exactly one choice for off-camera work. The exit of the cord near the body of the camera body seems weird at first, but after you use it a bit, you wonder why Nikon screwed up so badly with the SC hot-shoe adapters, which have huge cords that on an M camera either end up blocking the viewfinder or getting in your face, literally.

But the good thing with the 14498 is that you can get and use your favorite old Vivitar handgrip – because the extension shoe detaches from the bracket. And can be used without the bracket.

Flash operation is unremarkable (as it should be). You do not get a flash-ready indication in the EVF if you have it attached, and shot to shot lag time is not affected.

Conclusion. The Multifunction Grip M, if you can score one used for under $400, is a pretty good item. At that price, it’s not quite as outrageously expensive as list, and it helps tremendously with heavy lenses. As to the SCA set, it’s a tougher call, unless you can get one for under $200. Where the grip gives you a standard PC connector, you can use any handle-mount auto flash you want (such as a Metz 45 series). Flash may or may not be in your personal program, but I would remind you that the higher-end Leica flashes do high-speed synch very well.

Minolta CLE

‘It’s just as well,’ said the other, ‘because I don’t suppose I could have satisfied you.’ He made an apologetic gesture with his softpalmed hand. ‘You see how it is; an empty shop, you might say. Between you and me, the antique trade’s just about finished. No demand any longer, and no stock either.

— George Orwell, Nineteen Eighty-Four

As Charrington might have said to Smith, it is kind of late in the game for film Leicas. It’s 2017; Kodak makes three varieties of black and white film; and frankly, every other manufacturer has narrowed down to that number or fewer emulsions. Is it fun to shoot a film rangefinder these days? Yes and no. The beauty is that you can afford cameras you would have never dreamed of buying when you were 12 and reading old issues of Popular Photography. The bad news is that 30 years later, the cameras all seem so mortal.

The short take

Let’s forget about doing a full-on description of the camera; you have Google for that. Perhaps it is better to start with how this camera works for people who normally use Leicas.

Positives

20170611_212950

21mm f/4.5 ZM C-Biogon

The CLE, like a lot of small cameras (and M cameras) is straightforward. It is small, light, and easy to handle, if a bit blocky. The rangefinder seems more capable of focusing longer lenses than people seem to think. And it is extremely quiet. But there is more.

  • Size. The CLE is the size of a Canonet. A small one. It is about 80% of the size of a Leica M-series camera. Not vanishingly small, but quite a bit smaller and lighter. In fact, it might be uncomfortably small for the large-handed.
  • Rangefinder construction. The rangefinder mechanism is very similar to the Hexar RF in its design, right down to the annoying gear wheel for vertical adjustment. It also has the same general affect as in the Fuji GSW690III, Mamiya 6/7, and Bessa M cameras. You will love it or hate it.
  • Common parts. The CLE is built on the Minolta XG-7 platform. So it is cheap as an SLR and very expensive as a Leica-style rangefinder. A repair person has confirmed for me that many of the parts are the same but that some key ones (like the viewfinder/rangefinder) definitely are not.
  • Capacitive (or not). Your finger closes the circuit that makes a half-press of the shutter. This will be fun with gloves, I suspect. That said, it may make the camera more resistant to the breakdown of a two-stage shutter switch (ahem, cough, Hexar AF…).
  • OTF/WTF metering. The camera meters off the film (hence, there is no exposure lock). The metering is far more sophisticated than any Leica film M (and indeed the digital ones if they are not in the multipattern mode).
  • Wide lenses. The CLE is a great platform for compact wide M lenses. Your 21, 15, or 12mm lens does not need massive rangefinder accuracy – and when it comes to getting images on film, the CLE still gives you a 24x36mm frame.

20170611_213020.jpg

And here is that Biogon again.

  • Cheap TTL flash. A TTL flash costs $10 (Vivitar Auto Thyristor 550D for Minolta). Take that, Leica Camera AG.
  • Rangefinder. The rangefinder masks are on glass plates, not metal pieces. Don’t be surprised to see some degradation.

Quirks and Annoyances

If you are used to traditional Leicas, you may be tripped up by a few things:

  • Swing-open back. The Minolta dispenses with the irritating bottom-plate loading of a Leica M. And yes, it is annoying and pointless on a film Leica, and even more so on digital Leicas. The idea originally was to allow a bigger pressure plate and flatter film. While there may be a use case for this with some lenses, there is no real-world consequence to using a normal-sized plate except that your chances of successfully loading film go way up with a swing back.
  • “Easy” loading takeup spool. This is one place where Leica is easier to live with – on a Leica, you just jam the film leader into a multipronged spool. The CLE has a fairly terrible spool with a white collar. It’s tough to get the film tip in there. Konica wins in the easy-loading spool race; Minolta should have sucked it up and licensed that feature.
  • Rewind knob on the bottom. This is mostly harmless except that you need to lift and rotate the knob to open the back. This is definitely a “read the manual” moment.
  • No manual metering. A carry-over from the XG-7 series, the meter shuts down when you switch the shutter speed dial off A. This is not the worst thing that could happen; before you switch to M you will see the recommended shutter speed – you can dial it up or down from there.
  • Viewfinder blockage. The viewfinder/rangefinder window placement is terrible for big-diameter lenses. Most of these lenses are fast 50s, but even where they are not (such as the 21-35mm Dual Hexanon or the 18mm ZM Distagon),  a lens with a 55-62mm front end will block the viewfinder and rangefinder.

Do we like it?

The CLE is a very solid camera; it is small, quiet, and does not get in the way. It seems to distill the things that are fun about shooting rangefinders while minimizing the things that seem to be baggage. Maybe the sunset of film photography is here, maybe it is not, but this is a good companion with which to watch the sun go down. Or come up.

Konica M-Hexanon 28mm f/2.8

20160524_192703

The 28mm M-Hexanon, like the its focal length, occupies a strange space that is neither here nor there. I have never had good luck with 28mm lenses, if only because the angle is a little wide to be comfortable for close shots of people and a little narrow for some of the landscapes I shoot.

Only on the verge of selling mine (for lack of use since way back when I had an M8) did I shoot a bunch of tests with an M typ 240. This particular lens had been recollimated to be at exactly Leica spec (most lenses made before the M8 were not set up to hit the center of a flat sensor).

This piece will not editorialize much but instead show it like it is. Which is quite good, far better than I had remembered.

First, the obligatory “how sharp at a meter” exercise. This is f/2.8.

20160524_183719

Next: does it shoot good pictures of children? Yes.

20160524_184112

E poi – how is the bokeh? Strangely, it’s actually really good, especially for a wide lens. Here is the sequence f/2.8, 4, 5.6, 8.

Sunstars? Got ’em too. Here is f/2.8-8 (clockwise):

Gross resolving power (again, f/2.8-8):

And now, we laugh at your Elmarit-M!

20160524_191339

Flare resistance, same range:

Spherical distortion:

20160524_190112

Another test; can’t remember why. Seemed like a good idea at the time.

 

General verdict:

20160524_191253

50mm f/1.5 Zeiss Sonnar (1937): first

20160106_191418

Above: Zeiss Jena 5cm f/1.5 Sonnar (prewar; 1937 example of the 1932 design) on a Leica M typ 240 with an Amedeo dedicated 50mm adapter. This particular lens is almost 80 years old.

1. The story

The derivation of the trade name “Sonnar”(which may have less to do with Sonne than being a portmanteau of Sontheim am Neckar) reminds one of the the way that the Mr. Sparkle is a joint venture of the Matsumura Fishworks and the Tamaribuchi Heavy Manufacturing Concern. Be this as it may, the Sonnar had but one goal in life: crush Leitz’s fast lenses in an era where ISO 12 film was the norm. And that it amply did. Even today, the performance of this uncoated lens is impressive.

When the Sonnar arrived in 1931 (f/2.0) and 1932 (f/1.5), the Tessar (or Elmar) was the gold standard in normal lenses: a well-corrected triplet that, in an era lacking anti-reflective coatings, sneaked in a little more correction by cementing two pieces of glass together. When it came time to exceed f/2.8, though, the real competition began:

  • In 1889, Paul Rudolph, working for Carl Zeiss, determined that the best balance of contrast, correction, and cost was a three-element lens called an anastigmat (trade name: Protar).
  • In 1895, Rudolph invented the Planar, which was a highly-corrected symmetrical lens. It was shelved soon thereafter, no doubt on account of the low contrast that occurs with many air-to-glass surfaces.
  • In 1902, Zeiss released the Tessar, which provided more correction than an anastigmat (by adding a fourth element glued to the the third) without increasing the number of air-glass surfaces. The Tessar was technically inferior to the Planar, but it did not have the two extra air-glass surfaces (each robbing 10% of the light, compounded).
  • In 1925, Max Berek modified the Leitz Elmax, which had a 1-1-3 (cemented) arrangement into the Elmar, which bore a heavy resemblance to the Tessar, allowing for a good 35mm-format lens with fewer elements and less assembly labor.

In parallel universe (but still orbiting around Zeiss)

  • In 1916, an American (Charles Minor) started adding elements to the triplet, but just in the front. The result was the Gundlach Anastigmat, which had a blazingly fast f/1.9 aperture. The contemporary ads show that this was actually a cine lens.

ultrastigmat
image credit: Central Camera 1936: Gundlach, Ultrastigmat, Bausch & Lomb, Verito Lenses; Packard via free images (license)

  • In 1922, Ludwig Berthele, working for Ernemann (of Ermanox fame) continued elaborating this into the Ernostar, which became on of the first plate lenses to hit f/1.8 (in 1924).

00QKTL-60433884

Scan used by permission of Peter Naylor.

  • In 1926, Zeiss bought Ernemann and acquired Berthele in the deal.
  • In 1931, Berthele made the first f/2 Sonnar, which was a new lens with an old name. It was for 35mm format and had a 1-3-2 arrangement, with the second and third group cemented together.
  • In 1932, he made the f/1.5 version, which added an extra element to the rear group.
  • In 1936, caught off-balance, Leica licensed the Xenon, a symmetrical Double-Gauss design from Schneider, licensed in turn from Taylor-Hobson in England (the Series 0), in turn had been cribbed from the 1896 Planar.
  • In 1944-1945, the Zeiss plants were bombed back to the stone age.
  • In 1949, the Xenon was updated with coagulation-style lens coatings and became the Summarit.
  • In 1950, the Zeiss-Option Sonnars came out with a new computations.

The circle was now complete: the entire high-speed lens space was dominated by Zeiss designs and would continue to be – for pretty much all time. When you stop and think about it, until the advent of things like the 50/1.4G Nikkor, the history of high-speed lenses had been nearly nine decades decades of Sonnar and Planar clones.

Why did the Sonnar do so well? It’s not so complicated. It all boiled down to the number of air-to-glass interfaces. The classic triplet (the anastigmat) represented the best balance between correction, contrast, and cost. But adding more elements (to get more correction) meant more air-glass interfaces. And that meant less contrast and more flare. Zeiss increased the correction by cementing additional elements together to make a total of three groups. Leica could not do this because it did not have the intellectual property rights to do so. During WWII, Zeiss dabbled in coating its super-speed lenses, but it was not even really necessary given the Sonnar’s high transmission.

2. Using one today

These days, the Contax rangefinder is almost dead, 35mm film photography has gone all “Tony-Bennett-in-the-late 1990s,” and so the only place you’ll likely be using one of these is on a Leica body. Fortunately, it’s pretty easy to do. You just need the appropriate adapter. These are not particularly expensive for APS-C (although they do incorporate focusing helicoids); they are more expensive for Leica cameras because they need a mechanism to translate the movement of a 52.3mm lens to a camera whose rangefinder mechanism wants a 51.6mm normal lens (how two German companies known for their precision could get so sloppy about what constituted a “50mm” lens is baffling – but being a big-name German optical company means never having to say you’re sorry….).

By far, the best adapters for Leicas are made by Amedeo Muscelli, and of those, the best is that dedicated adapter for Contax 50mm rangefinder to Leica M. This is  not the usual lens with the reproduction of a Contax helicoid and focusing scale; rather, combines with the lens to make a unit that looks a bit like an old Elmar (allowing, of course, for the streamlined – dare we say phallic) shape of a Sonnar. The dedicated adapter focuses in the same direction as a Leica, at almost the same rate of distance change per unit of turn, and it has a lever, which can be critical if you are using a collapsible Zeiss lens (since with a traditional adapter, you are grasping the lens barrel to focus – something you can’t do with a collapsible lens). When your lens is dialed in, this adapter focuses amazingly accurately right down to 0.6m – a lot closer than any Contax did.

And how do you dial one in? If your lens is front-focusing, the simple answer is to remove the lens cell from the Contax barrel and unscrew the rear group slightly. It is never more than 1/4 turn, and you can maintain the setting by wrapping the threads of the rear group in Teflon tape and screwing it back in. Back it out about a 1mm (circumferentially) at a time, and check the focus on near and far objects. Do note that where a Sonnar has a lot of focus shift, you’re going to have to choose whether to

  1. Have the lens front focus at f/1.5, reach focus at f/2.8-4 ,and hit focus at f/5.6 and smaller
  2. Have the lens focus dead-on at f/1.5, miss at f/2-4, and become usable again at f/5.6 and on.

3. Observations

The first observation is that finding a prewar f/1.5 Sonnar that is not totally trashed is not particularly easy. Fortunately, at least cleaning marks are not an issue on uncoated lenses unless someone used Soft Scrub as an optical cleaner. Which does happen from time to time.

The second is that in the central part of the frame, this lens is very, very sharp. It has decent performance at f/1.5 if you optimize for that aperture, loses precise focus from f/2.8-f/4, and comes roaring back at f/6.3. If you keep with the original collimation (or an approximation of it, you get really sharp pictures around f/2.4, getting better through f/8.

The third is that the coatings on postwar Sonnars are not moving the ball much in terms of performance. Because this was the last fast Sonnar I obtained, it’s easier to compare this to the 1961 Carl Zeiss version. The 1937 model performs similarly in most ways. It is very slightly softer, with contrast that is almost at the level of a 1977 Jupiter-3.

Flare is only slightly improved by coatings, and they do not resolve the “rainbow circle” flare that afflicts every Sonnars (even multicoated Sonnetars) when a point light source is just out-of-frame. The one unique failure mode is strong side lighting (from the looks of it between 75 and 90 degrees to the lens axis), which can cause a veil across the entire surface. This also happens to a lesser degree with postwar Sonnars and copies, just not quite to the same degree.

Overall performance is strikingly close to the postwar, if you allow for slightly improved spherical aberration on the older lens. The postwar version is a tiny bit sharper, but seems clear that this comes at the expense of bokeh, which goes from smooth disks to ringed disks. If you care about that stuff.

4. Roy Batty

The f/1.5 Sonnar was the proverbial candle that burned twice as bright, and by 1962 it was essentially extinct. The “twice as bright” part is doubly applicable to the 1960-1962 Car That it was so widely copied in the postwar era is puzzling. Granted, German patents were handed over to the Japanese, but in terms of sheer performance with coatings, there were already better lenses to copy (like the Xenon). Canon, Nikon, and Zunow all made their own versions. The Soviets made one too. Perhaps there was a “prestige” element to the Contax that was desirable to copy (though you would not have the all-important brand name). Or perhaps there was something about the mechanical design of a 3-group lens such that the cost of machining extra parts for 6 groups cost more than triple-cementing rwo groups. The world may never know. The fetishization of the Sonnar did not really get started until the mid-2000s and by then, it was based more on imperfection and “look” than a perception that it was actually better.

Conclusion

The prewar f/1.5 Sonnar is a worthy lens, though its relative scarcity does not exactly make it a value leader compared to postwar variants. As with any 50mm Sonnar, as long as you take care to control the placement of light sources, it can be another creative tool, if not a broader-use lens.

Canon 50mm f/1.2 LTM: not screwmounting around

As you contemplate modern lenses, It is difficult to associate these optics with the proud civilizations that created them: Tokyo, Rochester, Sendai, Jena. They worshipped image quality, because it is strength that makes all other values possible. No picture survives without it. Who knows what delicate objective lenses have died out of the world, for want of the strength to continue. 

It’s a long way from the Canon 7sz to Andre Agassi, from the Serenar to the EOS Kiss Merkur XR4ti (…or whatever the amateur model of the week is). Canon used to be a hard-core producer of Leica knockoffs, many of which were more functional, convenient, and reliable than the rickety prewar designs that Leica kept elaborating. The Canon P was a standout, as were the VI-L and the 7 series.

The Canon 50mm f/1.2 (September 1956… can you believe that it is now almost 60 years old?) was the company’s penultimate halo lens. It came out with the VT (not Deluxe), and it would not be surpassed until 1961 with the Canon 7 and its 50/0.95 Dream Lens (from a size, weight, and cost standpoint, dream is clearly defined broadly to include nightmare). Ironically, the 50/1.2 cost more than the 50/0.95. Modern Canon lenses are quite good, but they don’t have that certain fun factor to them.

Synergies. This is a new thesis on my part, but I am starting to suspect that the M typ 240 and 246 tend to interact with lenses in ways that might not be immediately intuitive. Some lenses seem to work unexpectedly well with the color sensor (possibly the demosaic-ing algorithm accidentally boosting sharpness). Many lenses work better than expected with the Monochrom camera — likely because the color-bind sensor is not bothered as much by chromatic aberration. The “why” these things happen is probably insoluble; it is merely interesting that they do. And yes, some dog lenses do stay dogs, and some lenses have bad corners to f/8. Nulla regula sine exceptione.

Look and feel. Perhaps “Carré Otis” is the best way to express the relationship between the size of this lens and Canon’s more common 50mm lenses (2.8, 2.2, 1.9, 1.8, 1.5): generously proportioned, slightly flaky, and exhibiting certain, ahem, virtues.

The finish of the 50/1.2 is typical mid-to-late Canon that came into vogue in February 1956 with the 50mm f/1.8 mark II: a black enamel focusing ring and sandblasted chrome aperture ring and distance/DOF scale. This is much more pleasing than Canon’s contemporaneous all-black lenses (like the 35/1.5, 35/2, 100/3.5, 100/2, and 135/3.5), whose finish looks good in smaller lenses and feels chintzy in larger ones. But the affect with the 50/1.2 is solid. It will keep your M typ 240 on balance.

The focusing effort is heavy, and even the aperture turning is heavy. Unless, of course, lubricant has leaked out onto the aperture blades. The focusing pitch is very slow. Even the interesting push-button infinity lever takes a deliberate effort to dislodge. Is there a problem with any of this? No. Will you have issues tracking fast motion or switching from near-to-far subjects (or vice-versa) as if you were a D700? Yes.

Flare and use with filters. The first thing you have to remember with this lens is that you are dealing with an SLR-sized front element that sits very close to the front of the filter ring, seven elements, and single lens coatings from the mid-1950s. This isn’t going to flare, right?! Really, cleaning marks are the least of your problems here.

The big (physical) hazard with this lens is filters – as in don’t tighten down a filter without checking the clearance between the filter and the front lens element. If you want use conventional filters, you will likely need to use an empty ring as a spacer or fit a rubber o-ring around the threads on the filter. The only alternative is to use Canon RF filters, which are expensive and present a flush glass surface on the front of the lens. Not only does cabin your choices for lens hoods, it also presents ample opportunity for sidelight flare. Like the picture below (and let’s be fair – this is shot outdoors with floodlights everywhere). But be sure to use some kind of hood if you can.

L1000216

Canon filter ghosting (at f/1.2). All hell is breaking loose here (not surprising with Christmas lights a scant two feet from the lens), but it’s not all bad, given the motif:

L1000207

On balance, it is better to use a filter if you don’t want to deal with the rickety Canon metal lens caps, which never want to stay on. Just watch how you use it, and if you can space it correctly, consider an MRC.

General optical performance. On an M, at 24mp, the 50/1.2 really acts like Beauty and the Beast. At its largest aperture, it has microscopic depth of field, though with practice, you can tell where it is going to land. It does what most other super-fast spherical lenses do: it front focuses at wider apertures and settles down at middle ones. Every one of the three copies I have owned seems to have had slight differences in the midpoint of depth of field at close ranges and large apertures, which is not surprising. But this is par for the course; all fast 50mm lenses are testy on Leica rangefinders. As you start stopping down, the 50/1.2 becomes exponentially sharper. F/1.4 is light years better than 1.2; f/2.8 is orders of magnitude better yet.

Rather than dragging through every optical trait one at a time, let’s take it at f/1.2. Soft contrast, heavy vignetting, reasonable resolution of details, with a field that seems to curve at the edges toward the camera. This vignetting persists, even when the lens is coded as a Leica Noctilux. To be fair, this was more than enough for most 35mm film use. A lens like the Canon 50/1.2 would be used at night, where contrast would be high. It was not designed for thin depth-of-field fetishism. You can click on the picture below for a full-sized image.

IMG_5453

The picture at the top of this article is also shot at f/1.2. In terms of controlling bokeh, if you are into that thing, this is yet another lens where your best bokeh is achieved by (a) getting the subject as close as possible and (b) getting the background as far away as possible. Not to belabor a point from the previous article (on the MS-Sonnetar), but an easy and almost unavoidable rule of thumb is that the better a lens performs wide-open, the worse the bokeh. The list of these suppressed lenses is long and distinguished: this Canon, almost every Noctilux, the Hexanon Limited, the Nokton 1.1, the Nikkor 1.1, and basically any lens faster than f/1.4.

The next click, f/1.4, is a touch more contrasty, and is still a good setting to use in harsh nighttime conditions. Take a look at the field curvature here – there is no way the Gummi Bear wrapper should be so close to being in focus like the boys. Actually, it seems unlikely that both boys should be in focus, but there you have it. And here you also have the bokeh vibe. As in vibration.

L1000214

Just for fun, below is one shot wide-open with an M8 (you can click on it to see it at full size):

20071027_185039

Stopping down to f/2 gives better results yet – and the focusing point is now exactly where you would expect it to be. And here is your bokeh test outdoors. This is essentially minimum focusing distance with a background that is 50m away.

L1001209

At f/2.8, the lens is starting to hit its stride. Especially with the M set for emulation of the Leica 50/1.2, the lighting evens up, the sharpness goes up significantly, and the field flattens a bit. Although this begs the question of getting a slower lens and shooting more wide-open, with these old lenses, you are often better off with a fast lens stopped down than a slow lens wide-open. Also, the big old glass looks cooler and makes child ward nurses less likely to think you are using some kind of super-high-tech digital camera to document medical procedures (when you’re actually just bored).

L1001716

At f/4, performance starts to max out (like the 1.2 shot, you can click on the one below to get a full-sized image). You almost go into double-take mode because a good example of the lens looks sharper than lot of modern glass. I’m thinking particularly of the 50/1.4 AF Nikkor, which the Canon crushes – and likely because the Nikon is usually tied to a somewhat limited AF system (phase detect systems seem pretty much incapable of compensating for the focus shift that occurs when a lens stops down).

L1001214

IMG_5422

F/8 is where performance starts to degrade a little bit (see the full-sized image). Sharpness starts to decline. People take on cartoonish, ascetic, or vampiric features. Bring your gloves, lightsabers, and garlic.

L1001685

Conclusion? This lens was sold as the premium lens on a lot of Canon cameras – and in some ways a “bragging rights” lens vis-à-vis Leica and Nikon. The performance at f/1.2 is reasonable but not world-beating; but given limits seen even in digital M shutters (1/4000 sec), you would rarely be trying to shoot this lens wide-open in daylight. At least absent a neutral-density filter.

The pricing of this lens is all over the place; super-clean examples (from a cosmetic standpoint) seem to command a hefty premium, but almost all will exhibit microscopic scratches (cleaning marks), and oil haze is a recurring theme (and it is fairly destructive to these lenses’ coatings). But as with a lot of things, cosmetics are not indicative of performance; you never know whether a lens has been abused over the years until you actually try it.

Be ready to poke around through multiple examples to get one that works really well; keep an open mind about the condition of the coatings; what makes these lenses flare badly has little to do with the coatings but rather with the hazards of having that really big front element.

MS-Optical 50mm f/1.1 Sonnetar: magic time

The MS Optical Research Sonnetar is like The Life Aquatic with Steve Zissou. You either get it or you don’t, and if you don’t understand Jacques Cousteau, Willem Dafoe playing a subservient gay German, or Wes Anderson in general, there is no one who can make you like it. By the same token, if you drive Jaguars, no one with a 276hp front-drive Camry is ever going to win you over by telling you it has a higher thrust-to-weight ratio than an XJS V12 with the flying buttress hard top.

You don’t buy a Sonnetar as your only 50mm lens; in fact, you don’t even buy it as your only fast 50mm lens (and by the way, 50s should either be fast or fun – there is nothing more bland than a 50mm Summicron). The Sonnetar has strange controls for most (the rotating front barrel is exactly like using a Contax or Nikon rangefinder). It vignettes like crazy. At any distance, you can have your choice between correct focus and optical correction.

Why would anyone like it? It’s actually a big question whose only easy answer might be that when you have to shoot an f/1.1 lens in ultra-low light conditions, you pick your poison. You’re playing the limits.

N.B. All pictures shot in b/w are shot with a new Leica Monochrom (typ 246). All shots in color are with an M (typ 240). It’s absurd to change color pictures to monochrome to try to judge sharpness.

What is it? The MS-Sonnetar is the second modern revival of the 50mm f/1.5 Carl Zeiss Sonnar (West Germany, 1950s-1960s), the first one being the Zeiss ZM C-Sonnar 1.5/50mm. Why this type of lens is popular today is puzzling; when lens coatings enabled highly corrected 50mm lenses like the Planar, all of the expensive cemented groups of the f/1.5 Sonnar became obsolete. Today, the popularity of the Sonnar pattern might be in its imperfection: focus falloff in the form of field curvature and vignetting. The Sonnar yields marginally smaller and lighter overall packaging than a Planar or Double Guass, and it has slightly higher resistance to flare.

Every Sonnar revival/clone/ripoff over the past 50+ years has had its own set of strengths and weaknesses; it seems that almost none of them shows the balanced performance of the original Zeiss design. They either sacrifice sharpness for bokeh or go gaga for bokeh and live with a lot of focus shift.

The Sonnetar goes for the gusto with fewer elements and only one cemented group; a lighter, more compact barrel; and almost an entire stop of extra speed. It is the fastest Sonnar-style production lens in terms of T-stops, edging out the 50/1.1 Zunow by virtue of having fewer elements and more effective coatings.

Getting a handle on it. The Sonnetar is a very compact lens; the barrel is smaller than a 50mm Summicron, flaring out to a wider front section that takes 52mm filters (and no, full-sized B+Ws do not vignette). It’s hard to say whether it is modeled after a Zunow, a 50/1.1 Nikkor, or an Opton Sonnar. But all of them have a particular shape to them. The Sonnetar looks most like the Zunow, with the focusing and aperture rings reversed.

The frontmost ring is focus (supplemented with a small lever in the back if that’s what you want); the rearward ring is the aperture control, which smoothly adjusts from f/1.1 to f/16. Like a lot of older lenses, as the aperture numbers get higher, they get closer together (it is probably also a side effect of the Sonnetar’s super-nifty, perfectly circular German iris. But no matter in splitting hairs between f/11 and 16; you won’t be shooting there anyway.

The tough part of the ergonomics is something you’d never expect: the rear lens cap. It screws into the rear lens group, which unfortunately is also the thing that is the coma control. As for the front cap (which also screws in), you’ll probably leave that in the box with the hand-drawn spherical aberration measurements and the pretty hood. You’ll either use an MRC filter or a pinch cap to keep your fingers off the front glass.

Overall build quality. Done out in matte black chrome, the finish of the Sonnetar is a good match for a black Leica M-P or Monochrom typ 246. The black anodized finish is very tough, and the mounting ridges that you grasp to mount the lens will take bits of skin along with them. Numbers are clearly engraved and filled in white. They are legible and inoffensive. There is no way to 6-bit code this lens, since the rear flange is integral with the lens barrel (it is very much built like an old rangefinder lens with a rotating optical unit).

The glass (modified Sonnar design, more air-spaced) is perfectly clean and perfectly coated (from what I understand, MS Optical’s multicoating is a simple 2-layer). The reality is that the efficiency of modern coatings and the low element count makes internal flare a non-issue. Interior blacking is actually dark grey, which may seem puzzling, but if it’s good enough for telescopes, it’s probably good enough for camera lenses.

There are some build quality nits. One is that the lens (both on the sensor and in the rangefinder) hits infinity with about a mm of travel left in the focusing ring. This is probably an artifact of having that ring be the same part that provides the rangefinder cam. This might be of concern if you are trying to focus at infinity by feeling for a stop – and it is no different a problem than using an Asian LTM adapter that is a fraction of a millimeter too thin. It almost seems like you could just loosen the focusing ring screws and shift it so that infinity was on the stop

The other is that MS-Optical only uses a couple of actual lens mounts. The 51.6mm lens mount provides cam action that approximates a 51.6mm (Leica-spec) lens. Its frameline selection is determined by whether the mount is compressed around a notch in one of the bayonets or not. This lens uses about 90 degrees to go from 1m to ∞, which is quite short. This gives you a much faster acquisition time for focus but degrades the focus accuracy. Contrast this to 1950s and 1960s LTM lenses (and indeed the 75 Summilux), whose ponderously slow focusing rate can cause you to miss the moment completely. In any case, you are much better off using the ring than the lever because the larger diameter of the barrel provides better precision (because it takes more movement of the control surface per unit of focus change).

The $&@(!#% “coma adjuster.” The most famous feature of this lens is a “coma adjuster,” a ring around the rear element that has a white indicator dot and four distance dots (1m – white; 2m – white, 4m – red, and infinity-white). The lens is sold with an instruction sheet that tells you this is for adjusting “coma,” which would be the shape of point light sources (round or not). Why does anyone care about coma? It’s a big deal for telescopes, and that’s what Miyazaki designed for most of his life. What you get in terms of optical performance in the near range is a set of very subtle changes. Perhaps this operates better at a distance, but for its stated purpose, the adjuster seems a little bit gimmicky.

What is not so subtle is that the same control – determining the position of the rear lens group – has a tremendous effect on focus (because it changes the focal length of the lens) and on field curvature (whether the plane of focus is flat across the field or curved inward at the edges). This almost off-label use is actually very easy to exploit (see the discussion of what the directions actually say below).

Focal length control is very important on a super-speed lens. A Leica rangefinder assumes the same movement as a 51.6mm lens. Nominal “50mm” lenses that have a 51.6mm focal length can rely on simple movement of the lens cell when focusing to track from near to far at the correct rate. Shorter lenses (like 35mm lenses) have to translate a smaller amount of lens cell movement (front to back) to a relatively larger amount of rangefinder cam movement. Likewise, a 90mm lens needs the cell to move more than the cam moves. With most 50mm f/2 lenses, variances of a couple of 1/10s of a millimeter in actual focal length are not of great consequence because the lens has a little depth of field (or “fudge factor”). Lenses that have super-thin depth of field, such as an f/1.1 lens, require far more precision in their focal length to work well with a rangefinder. One can also surmise that the coma adjuster ring also serves as a calibration method for the lens that does not require reassembly.

According to the directions, this is how to use the coma adjuster ring:

Adjacent to the coma adjustment ring, you will find a white reference point (see the above illustration) to which an appropriate ring position has to be matched by rotating the ring. Using the coma adjustment system, a very high level tuning/focusing optimisation is made possible.

[…]

For Leica M Type Rangefinder Camera Users Initially, bring the red dot of the ring to the white reference point by rotating the coma adjustment ring. As you familiarise yourself to this lens, you may wish to change the ring position either to the left or right. For example, at the infinity best point, the actual focus point will be slightly brought forward (therefore, take a photo with focus point slightly backward). At the white dot that is best for 2m distance, a focus point will be slightly brought backward (therefore, take a photo with focus point slightly forward). This might take some practice and experience to achieve best results.

In real life, the tips for using this are:

  • Turning the adjuster toward longer distances will make the lens focus closer to the camera.
  • Turning the adjuster toward shorter distances will make the lens focus farther from the camera.
  • Putting the coma adjuster on 1m will cause a back focus of 15-20cm at 1m, which is not insignificant.
  • Putting the coma adjuster on ∞ will cause the lens not to focus (optically) to infinity.
  • Putting the adjuster about 2mm short of the 4m mark will produce best focus at f/1.1-1.6 from just under 1m to infinity. This is not surprising, since it is a distance of about 50 focal lengths (2.5m), which is a conventional distance at which lenses are tested. It is also apparently the setting used to measure MTF (as shown on the instruction sheet).
  • The lens will decouple from an M rangefinder at the minimum distance stop, so don’t do any testing below about 0.8m.

IN MOST CASES, YOU WILL ONLY BE MOVING THIS ADJUSTER 1 or 2MM FROM THE RED MARK. UNLESS YOU WANT TO GO CRAZY.

It really, really, really helps to have a LensAlign to calibrate the lens because you can see the zone of focus very correctly. Although you can trial-and-err it without this $80 plastic device, the problem is ascertaining the effect of focus shift. You want to hit a calibration where the zone of focus includes the intended point through as many apertures as you can – because like a lot of lenses in this speed class, the Sonnetar has under corrected spherical aberration that causes focus shift with aperture changes. The LensAlign lets you observe a band of high contrast as it moves (and expands) as you stop down. You don’t even need to shoot it head-on as you would with a DSLR; you need to check this from oblique angles too – because that is how you will focus your Leica in real life. Needless to say, if you are going to use this lens with a film camera, it helps to have a digital to get it dialed in.

Even within any calibration, the M viewfinder system (including the improved rangefinders for the M typ 240 and 246) has enough lash in it that the direction from which you focus – as well as small movements that don’t even produce a visible change in the RF alignment – can affect the focus point. So the word is “practice.” Wide-open, you will nudge to a slightly farther focused distance (without making the RF spot move).

Performance. All high-speed 50mm lenses (f>1.4) involve tradeoffs. The simple answer is that the Sonnetar has characteristics that vary depending on the coma adjuster setting, and these correspond pretty closely to the optimization differences in an Opton Sonnar, a 50/1.4 Nikkor LTM lens, and a 50/1.5 Canon LTM lens.

For most testing, I have kept the lens optimized at f/1.1 to 1/6 at distances up to 3m. It performs very well from 0.8 to 10m at f/1.1-1.6. If you get the calibration just right, you can keep it sharp through f/5.6, and it’s sharp across the field. At long distances, however, you get progressive blur toward the frame edges. This is gone at f/8. I suspect that the coma adjuster could overcome things, but distance shots are a little outside the use case for this lens (for distance, you are always better off with a slightly smaller aperture lens).

Sharpness seems to max out at f/1.6 (the dot between f/1.4 and f/2 on the focusing scale). Contrast is about double that at f/1.1. If something like the Canon 50mm f/1.2 LTM lens is your frame of reference, at wide-open settings, the Sonnetar is visibly better (and focuses far more accurately). If you are shooting at f/4 or smaller, something like the Canon provides much more balanced performance.

Here is a sequence that should show the differences at the wide apertures. If you click on the picture, you should be able to see it full-size. First, 0.8m, whole scene. Yes, the 44-year-old unopened bottle of Beam is real, as is the gaffe of keeping champagne at other than depressed temperatures. And no, I can’t explain the presence of the CFL bulb on the bar, since I own no fixture that takes them.

overall

Next, check out the difference between f/1.1 (left) and f/1.6 (right) at 100%. The apertures shown in the metadata are computed by the M typ 246, so they are not entirely accurate. There is quite a bit of contrast jump in one stop.

center-100

Next, here is the same comparison at 200%. The focus point here is the stamp “Spring 1963.”

center-200

Next, here is the mid-right side at 100%. Still holding together.

middle-right-100

Extreme left, 100%. Same story.

corner-100

Real-world, stressed out, trying to get enough distance to focus in almost complete darkness, you still get good results. This is f/1.6 at ISO 2500 and 1/12 of a second:

L1001163

And a bit better at 1/45 sec (by the way, the Last Word is something you ought to try sometime):

L1001126

And this is the obligatory f/8 shot outdoors with a G filter.

L1000791

Flare is very well controlled except in extreme side-lighting, where you can get some bizarre effects. This is a characteristic of Sonnar-type lenses. There is some “glow,” which is the normal Sonnar flare on hard dark/light interfaces that occurs when the focus point is ahead of the object. It is more visible in the preview mode of an M camera than it is in the final files. Resistance to extreme backlighting is pretty good, a lot better than with the old Canon 50/1.2:

L1000799

Here is the difficult-to-replicate total flare failure mode. You might want to use a lens hood when the sun is in the corner. Or maybe not.

L1000790

Vignetting is not going to be a huge issue at close distances, since the barrel is extended. At f/2 and down, it is not obnoxious, especially when combined with the automatic corner correction on the M8/9/240/246. If you want to go very heavy duty on perfect corrections, use the Adobe Flat Field plugin for Lightroom. You will need to shoot baseline calibrations at the distances and apertures you normally shoot. You can do that after the fact.

Color rendition can be a little weird. The “tantalum” glass in this lens (probably standing in for less-exciting sounding “rare earth”) shows mild versions of the color enhancing effects of a didymium enhancing filter (like a B+W 491, Tiffen Enhancing Filter, or Hoya Redhancer). Magenta and yellow seem to be favored here. Here are some pictures that should illustrate this. For your evaluation of secondary characteristics, this is at f/2:

L1000689

f/4:

L1000686

f/1.1:

L1000431

f/1.1:

20151010_150258

Chromatic aberration is a factor here but not in the traditional way. Wide-open, this lens tends to have the blur from adjoining colors bleed together. On an M typ 240, this looks a little bit like soft focus. On the M typ 246, this disappears completely, and the lens develops some killer contrast. This is characteristic of sticking a lot of old-school lenses on the new Monochrom body; a lot of older optical designs suddenly start looking awesome.

Bokeh is such a bourgeois concept. With spherical lenses, you either get universally good bokeh but bad focus shift (ZM C-Sonnar) or poor bokeh and reduced focus shift (50/1.4 Nikkor, 50/1.5 Canon). Unfortunately, with high-speed lenses, the latter combination (or in this case calibration) is much easier to live with. With the Sonnetar, you want to get as close to your subject as possible with as great a distance from it to the background as possible. Otherwise, you can enjoy what generation of Canon and Nikon Sonnar clones have experienced. By the way, here is a direct comparison between the bokeh of the 50/1.2 Canon and the Sonnetar. Maybe you can tell which is which?

L1001270 L1001341

Conclusion. If I did not currently own eleven 50mm lenses (just temporarily), I don’t know how I would feel about this one. That said, the Sonnetar is the one that seems to be welded onto my Monochrom. It’s quirky, it takes a lot of practice to use, and even after a couple of months of practice, there is still a lot to master. That said, it’s an elegant alternative to the Coke cans and second mortgages that tend to dominate the super-speed 50mm space.